17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Choriocapillaris and retinal vascular plexus density of diabetic eyes using split-spectrum amplitude decorrelation spectral-domain optical coherence tomography angiography

      , , , , , ,
      British Journal of Ophthalmology
      BMJ

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/aims

          Split-spectrum amplitude decorrelation angiography for spectral-domain optical coherence tomography has enabled detailed, non-invasive assessment of vascular flow. This study evaluates choriocapillaris and retinal capillary perfusion density (CPD) in diabetic eyes using optical coherence tomography angiography (OCTA).

          Methods

          Records of 136 eyes that underwent OCTA imaging at a single institution were reviewed. Eyes were grouped as non-diabetic controls (37 eyes), patients with diabetes mellitus (DM) without diabetic retinopathy (DM without DR, 31 eyes), non-proliferative diabetic retinopathy (NPDR, 41 eyes) and proliferative diabetic retinopathy (PDR, 27 eyes). Quantitative CPD analyses were performed on OCTA images for assessing perfusion density of the choriocapillaris and retinal plexus for all patients and compared between groups.

          Results

          Eyes with NPDR and PDR showed significantly decreased choriocapillaris CPD compared with controls, while DM eyes without DR did not show significant change. Choriocapillaris whole-image CPD was decreased by 8.3% in eyes with NPDR (p<0.01) and decreased by 7.1% in eyes with PDR (p<0.01). Choriocapillaris parafoveal CPD was decreased by 8.9% in eyes with NPDR (p<0.01) and decreased by 8.2% in eyes with PDR (p<0.01). Compared with controls, only eyes with PDR showed significantly decreased retinal CPD, as well as significantly increased foveal avascular zone (FAZ) area. In those patients, retinal whole-image CPD was decreased by 9.7% (p<0.01), retinal foveal CPD was decreased by 20.5% (p<0.01) and retinal parafoveal CPD was decreased by 11.4% (p<0.01). FAZ area was increased by 50.9% (p<0.01).

          Conclusions

          Choriocapillaris and retinal CPD are reduced in diabetic retinopathy, while FAZ area is increased in eyes with PDR. Vascular changes captured by new imaging modalities can further characterise diabetic choroidopathy.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Split-spectrum amplitude-decorrelation angiography with optical coherence tomography

          Amplitude decorrelation measurement is sensitive to transverse flow and immune to phase noise in comparison to Doppler and other phase-based approaches. However, the high axial resolution of OCT makes it very sensitive to the pulsatile bulk motion noise in the axial direction. To overcome this limitation, we developed split-spectrum amplitude-decorrelation angiography (SSADA) to improve the signal-to-noise ratio (SNR) of flow detection. The full OCT spectrum was split into several narrower bands. Inter-B-scan decorrelation was computed using the spectral bands separately and then averaged. The SSADA algorithm was tested on in vivo images of the human macula and optic nerve head. It significantly improved both SNR for flow detection and connectivity of microvascular network when compared to other amplitude-decorrelation algorithms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Optical coherence tomography: imaging of the choroid and beyond.

            Seventy percent of the blood flow to the eye goes to the choroid, a structure that is vitally important to the function of the retina. The in vivo structure of the choroid in health and disease is incompletely visualized with traditional imaging modalities, including indocyanine green angiography, ultrasonography, and spectral domain optical coherence tomography (OCT). Use of new OCT modalities, including enhanced depth imaging OCT, image averaging, and swept-source OCT, have led to increased visualization of the choroidal anatomy. The correlation of these new anatomical findings with other imaging modalities results increases understanding of many eye diseases and recognises of new ones. The status of the choroid appears to be a crucial determinant in the pathogenesis of diseases such as age-related choroidal atrophy, myopic chorioretinal atrophy, central serous chorioretinopathy, chorioretinal inflammatory diseases, and tumors. Extension of these imaging techniques has provided insights into abnormalities of the sclera and optic nerve. Future developments will include blood flow information, 3D rendering of various ocular structures, and the ability to evaluate changes in 3D structural information over time (4D imaging). Copyright © 2013 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantification of Retinal Microvascular Density in Optical Coherence Tomographic Angiography Images in Diabetic Retinopathy.

              Quantitative measurements based on optical coherence tomographic angiography (OCTA) may have value in managing diabetic retinopathy (DR), but there is limited information on the ability of OCTA to distinguish eyes with DR.
                Bookmark

                Author and article information

                Journal
                British Journal of Ophthalmology
                Br J Ophthalmol
                BMJ
                0007-1161
                1468-2079
                March 22 2019
                April 2019
                April 2019
                May 23 2018
                : 103
                : 4
                : 452-456
                Article
                10.1136/bjophthalmol-2018-311903
                29793926
                3b17ab31-5c4f-4626-915c-726fdf1b1f6b
                © 2018
                History

                Comments

                Comment on this article