0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Chemokine Receptor CCR1: A New Target for Progressive Kidney Disease

      ,

      American Journal of Nephrology

      S. Karger AG

      Kidney disease, Fibrosis, Chemokines, Inflammation

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Infiltrating leukocytes are thought to contribute to the progression of kidney disease. Locally produced chemokines guide circulating leukocytes into the kidney, which renders therapeutic blockade of respective chemokine receptors on the leukocyte surface as potential targets for the inhibition of renal leukocyte recruitment. By using mutant mice and specific antagonists, we found that chemokine receptor CCR1 has non-redundant functions for leukocyte adhesion to activated vascular endothelium and for transendothelial diapedesis. Most importantly, CCR1 blockade with a specific small molecule antagonist can improve injury in several types of progressive kidney disease models, even if treatment is initiated in advanced disease states. Identification of new targets may add to the therapeutic options in chronic kidney disease.

          Related collections

          Most cited references 29

          • Record: found
          • Abstract: found
          • Article: not found

          Recognition of pathogen-associated molecular patterns by TLR family.

          Toll-like receptors (TLRs) are type I transmembrane proteins involved in innate immunity by recognizing microbial conserved structures. Recent studies have shown that TLR3 recognizes dsRNA, a viral product, whereas TLR9 recognizes unmethylated CpG motifs frequently found in the genome of bacteria and viruses, but not vertebrates. TLR7 recognizes small synthetic immune modifiers including imiquimod, R-848, loxoribine, and bropirimine, all of which are already applied or promising for clinical use against viral infections and cancers. Plasmacytoid dendritic cells express TLR7 and TLR9, and respond to TLR7 and TLR9 ligands by producing a large amount of interferon (IFN-alpha). These results indicate that TLR3, TLR7 and TLR9 may play an important role in detecting and combating viral infections.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lymphocyte traffic control by chemokines.

            In contrast to the remarkable chemokine responses of phagocytes and monocytes that were documented early on, lymphocytes have been considered for a long time to be poor targets for chemokine action. This view has changed dramatically with the discovery that peripheral blood T cells need to be activated before they can migrate in response to inflammatory chemokines. These chemokines do not act on the bulk of resting T cells that are in circulation. The identification of a new group of chemokines that selects resting, as opposed to effector, T and B cells was very exciting. These inflammation-unrelated chemokines affect transendothelial migration and localization of progenitor and mature lymphocytes in lymphoid and nonlymphoid tissues. Here, we summarize the current view of chemokine-mediated lymphocyte traffic and focus on the molecular mechanisms by which T cell responses to chemokines are modulated. Recent developments in this area justify the hypothesis that the distinct migration patterns of lymphocytes throughout their life cycle--that is, during lymphopoiesis, antigen-dependent priming, inflammation and immune surveillance--are finely tuned by changing sets of chemokines that are selective for developmentally regulated chemokine receptors. Thus, the chemokine system assures that cell traffic during inflammatory responses occurs in the proper spatial and temporal fashion and disturbance of this system, therefore, can lead to inflammatory disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of chemokine receptors in primary, effector, and memory immune responses.

              The immune system is composed of single cells, and its function is entirely dependent on the capacity of these cells to traffic, localize within tissues, and interact with each other in a precisely coordinated fashion. There is growing evidence that the large families of chemokines and chemokine receptors provide a flexible code for regulating cell traffic and positioning in both homeostatic and inflammatory conditions. The regulation of chemokine receptor expression during development and following cell activation explains the complex migratory pathways taken by dendritic cells, T and B lymphocytes, providing new insights into the mechanisms that control priming, effector function, and memory responses.
                Bookmark

                Author and article information

                Journal
                AJN
                Am J Nephrol
                10.1159/issn.0250-8095
                American Journal of Nephrology
                S. Karger AG
                0250-8095
                1421-9670
                2005
                August 2005
                18 August 2005
                : 25
                : 4
                : 365-372
                Affiliations
                Nephrological Center, Medical Policlinic, Ludwig Maximilians University of Munich, Munich, Germany
                Article
                87185 Am J Nephrol 2005;25:365–372
                10.1159/000087185
                16088077
                © 2005 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 1, Tables: 1, References: 48, Pages: 8
                Product
                Self URI (application/pdf): https://www.karger.com/Article/Pdf/87185
                Categories
                In-Depth Topic Review

                Cardiovascular Medicine, Nephrology

                Inflammation, Kidney disease, Fibrosis, Chemokines

                Comments

                Comment on this article