16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Erb-B2 Receptor Tyrosine Kinase 2 is negatively regulated by the p53-responsive microRNA-3184-5p in cervical cancer cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The oncogenic role of Erb-B2 Receptor Tyrosine Kinase 2 (ERBB2) has been identified in several types of cancer, but less is known on its function and mechanism of action in cervical cancer cells. The present study employed a multipronged approach to investigate the role of ERBB2 in cervical cancer. ERBB2 and microRNA (miR)-3184-5p expression was assessed in patient-derived cervical cancer biopsy tissues, revealing that higher levels of ERBB2 and lower levels of miR-3184-5p were associated with clinicopathological indicators of cervical cancer progression. Furthermore, ERBB2 stimulated proliferation, migration and sphere-formation of cervical cancer cells in vitro. This effect was mediated by enhanced phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α activity. Additionally, it was revealed that miR-3184-5p directly suppressed ERBB2 in cervical cancer cells. The p53 activator Mithramycin A stimulated p53 and miR-3184-5p expression, thereby lowering the levels of ERBB2 and attenuating proliferation, migration and sphere-formation of cervical cancer cells. In conclusion, the findings of the present study suggested ERBB2 as an oncogenic protein that may promote invasiveness in cervical cancer cells. Treatment of cervical cancer cells with the p53 activator Mithramycin A restored the levels of the endogenous ERBB2 inhibitor miR-3184-5p and may represent a novel treatment strategy for cervical cancer.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            • Record: found
            • Abstract: found
            • Article: not found

            Global cancer statistics, 2012.

            Cancer constitutes an enormous burden on society in more and less economically developed countries alike. The occurrence of cancer is increasing because of the growth and aging of the population, as well as an increasing prevalence of established risk factors such as smoking, overweight, physical inactivity, and changing reproductive patterns associated with urbanization and economic development. Based on GLOBOCAN estimates, about 14.1 million new cancer cases and 8.2 million deaths occurred in 2012 worldwide. Over the years, the burden has shifted to less developed countries, which currently account for about 57% of cases and 65% of cancer deaths worldwide. Lung cancer is the leading cause of cancer death among males in both more and less developed countries, and has surpassed breast cancer as the leading cause of cancer death among females in more developed countries; breast cancer remains the leading cause of cancer death among females in less developed countries. Other leading causes of cancer death in more developed countries include colorectal cancer among males and females and prostate cancer among males. In less developed countries, liver and stomach cancer among males and cervical cancer among females are also leading causes of cancer death. Although incidence rates for all cancers combined are nearly twice as high in more developed than in less developed countries in both males and females, mortality rates are only 8% to 15% higher in more developed countries. This disparity reflects regional differences in the mix of cancers, which is affected by risk factors and detection practices, and/or the availability of treatment. Risk factors associated with the leading causes of cancer death include tobacco use (lung, colorectal, stomach, and liver cancer), overweight/obesity and physical inactivity (breast and colorectal cancer), and infection (liver, stomach, and cervical cancer). A substantial portion of cancer cases and deaths could be prevented by broadly applying effective prevention measures, such as tobacco control, vaccination, and the use of early detection tests. © 2015 American Cancer Society.
              • Record: found
              • Abstract: found
              • Article: not found

              Cancer statistics, 2016.

              Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data were collected by the National Cancer Institute (Surveillance, Epidemiology, and End Results [SEER] Program), the Centers for Disease Control and Prevention (National Program of Cancer Registries), and the North American Association of Central Cancer Registries. Mortality data were collected by the National Center for Health Statistics. In 2016, 1,685,210 new cancer cases and 595,690 cancer deaths are projected to occur in the United States. Overall cancer incidence trends (13 oldest SEER registries) are stable in women, but declining by 3.1% per year in men (from 2009-2012), much of which is because of recent rapid declines in prostate cancer diagnoses. The cancer death rate has dropped by 23% since 1991, translating to more than 1.7 million deaths averted through 2012. Despite this progress, death rates are increasing for cancers of the liver, pancreas, and uterine corpus, and cancer is now the leading cause of death in 21 states, primarily due to exceptionally large reductions in death from heart disease. Among children and adolescents (aged birth-19 years), brain cancer has surpassed leukemia as the leading cause of cancer death because of the dramatic therapeutic advances against leukemia. Accelerating progress against cancer requires both increased national investment in cancer research and the application of existing cancer control knowledge across all segments of the population.

                Author and article information

                Journal
                Oncol Rep
                Oncol Rep
                Oncology Reports
                D.A. Spandidos
                1021-335X
                1791-2431
                January 2021
                19 November 2020
                19 November 2020
                : 45
                : 1
                : 95-106
                Affiliations
                [1 ]Department of Gynecological Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
                [2 ]Department of Respiration and Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
                [3 ]Department of Gynecological Oncology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
                [4 ]Department of Immunology and Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
                Author notes
                Correspondence to: Mr. Hongtao Wang, Department of Immunology and Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, 2600 Donghai Road, Bengbu, Anhui 233030, P.R. China, E-mail: bb_wanghongtao@ 123456126.com
                Article
                or-45-01-0095
                10.3892/or.2020.7862
                7709819
                33416166
                3b23d503-a320-4a61-afff-a6addc636666
                Copyright: © Liu et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 30 November 2019
                : 02 October 2020
                Categories
                Articles

                cervical cancer,erb-b2 receptor tyrosine kinase 2,microrna-3184-5p,p53

                Comments

                Comment on this article

                Related Documents Log