23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increases in muscle sympathetic nerve activity, heart rate, respiration, and skin blood flow during passive viewing of exercise

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The cardiovascular and respiratory effects of exercise have been widely studied, as have the autonomic effects of imagined and observed exercise. However, the effects of observed exercise in the first person have not been documented, nor have direct recordings of muscle sympathetic nerve activity (MSNA) been obtained during observed or imagined exercise. The aim of the current study was to measure blood pressure, heart rate, respiration, skin blood flow, sweat release, and MSNA (via microelectrodes inserted into the common peroneal nerve), during observation of exercise from the first person point of view. It was hypothesized that the moving stimuli would produce robust compensatory increases in the above-mentioned parameters as effectively as those generated by mental imagery and—to a lesser extent—actual exercise. Nine subjects watched a first-person running video, allowing them to view the action from the perspective of the runner rather than viewing someone else perform the exercise. On average, statistically significant increases from baseline during the running phase were seen in heart rate, respiratory rate, skin blood flow, and burst amplitude of MSNA. These results suggest that observation of exercise in the first person is a strong enough stimulus to evoke “physiologically appropriate” autonomic responses that have a purely psychogenic origin.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Cardiovascular events during World Cup soccer.

          The Fédération Internationale de Football Association (FIFA) World Cup, held in Germany from June 9 to July 9, 2006, provided an opportunity to examine the relation between emotional stress and the incidence of cardiovascular events. Cardiovascular events occurring in patients in the greater Munich area were prospectively assessed by emergency physicians during the World Cup. We compared those events with events that occurred during the control period: May 1 to June 8 and July 10 to July 31, 2006, and May 1 to July 31 in 2003 and 2005. Acute cardiovascular events were assessed in 4279 patients. On days of matches involving the German team, the incidence of cardiac emergencies was 2.66 times that during the control period (95% confidence interval [CI], 2.33 to 3.04; P<0.001); for men, the incidence was 3.26 times that during the control period (95% CI, 2.78 to 3.84; P<0.001), and for women, it was 1.82 times that during the control period (95% CI, 1.44 to 2.31; P<0.001). Among patients with coronary events on days when the German team played, the proportion with known coronary heart disease was 47.0%, as compared with 29.1% of patients with events during the control period. On those days, the highest average incidence of events was observed during the first 2 hours after the beginning of each match. A subanalysis of serious events during that period, as compared with the control period, showed an increase in the incidence of myocardial infarction with ST-segment elevation by a factor of 2.49 (95% CI, 1.47 to 4.23), of myocardial infarction without ST-segment elevation or unstable angina by a factor of 2.61 (95% CI, 2.22 to 3.08), and of cardiac arrhythmia causing major symptoms by a factor of 3.07 (95% CI, 2.32 to 4.06) (P<0.001 for all comparisons). Viewing a stressful soccer match more than doubles the risk of an acute cardiovascular event. In view of this excess risk, particularly in men with known coronary heart disease, preventive measures are urgently needed. Copyright 2008 Massachusetts Medical Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cardiovascular and respiratory responses to changes in central command during isometric exercise at constant muscle tension.

            1. Experiments were designed to show whether elements of the command descending from higher centres to exercising muscles provide an input for cardiovascular and respiratory control. Vibration, known to be a powerful stimulus to the primary afferents from muscle spindles, was applied to the biceps tendon of human subjects performing sustained isometric contractions with the biceps or the triceps muscle. When the biceps was contracting this activation of muscle spindle primary afferents in it provided an element of reflex excitation, so that less central command was required to achieve a given tension. When triceps was contracting, the activation of muscle spindle primary afferents in its antagonist, biceps, contributed an element of reflex inhibition, so that more central command than normally was required to achieve a given tension. The cardiovascular and respiratory responses to an isometric effort could thus be investigated at any tension when the central command was normal, decreased, or increased.2. Blood pressure, heart rate, and pulmonary ventilation all increase in an isometric effort. The increase in each is less when the central command is reduced. The increase in each is greater when the central command is increased.3. It is concluded that there is irradiation of cardiovascular and respiratory control centres by the descending central command during voluntary muscular contractions in man.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Central activation of autonomic effectors during mental simulation of motor actions in man.

              1. Healthy subjects actually performed and mentally simulated a leg exercise at two levels of work (15 and 19 kg loads). Heart rate, respiration rate and end-tidal PCO2 were measured in both conditions. In addition, muscular metabolism was simultaneously measured using 31P nuclear magnetic resonance (NMR) spectroscopy. 2. During actual exercise, heart and respiration rates increased, first abruptly and then gradually in relation to the level of work. End-tidal PCO2 was unaltered. NMR spectra showed a drop in phosphocreatine (PCr) and an increase in inorganic phosphate (Pi) concentrations. Intracellular pH fell to 6.65 at maximal effort with a 19 kg load. 3. During mental simulation, both heart and ventilatory rate increased immediately after mental exercise was begun. This increase was proportional to the amount of simulated exercise. Heart rate remained about 25% below the level observed during actual exercise. The increase in respiration rate, by contrast, was more marked than during actual exercise. Finally, end-tidal PCO2 decreased progressively to about 18% of the resting value. 4. During mental simulation, NMR spectra were unchanged with respect to the resting values. 5. Subjects rated their sensation of fatigue using an analog rating scale, during both actual exercise and mental simulation. During mental exercise, the sensation of fatigue was greater with the 19 kg load than with the 15 kg load. 6. These results demonstrate that mental simulation of action can activate heart and respiration control mechanisms. They suggest that autonomic activation during imagined action pertains to the more general phenomenon of preparation for action.
                Bookmark

                Author and article information

                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                11 June 2013
                2013
                : 7
                : 102
                Affiliations
                [1] 1School of Medicine, University of Western Sydney Penrith, NSW, Australia
                [2] 2Neuroscience Research Australia Sydney, NSW, Australia
                Author notes

                Edited by: John P. Horn, University of Pittsburgh, USA

                Reviewed by: Alberto Porta, University of Milan, Italy; Jon W. Williamson, UT Southwestern Medical Center, USA

                *Correspondence: Rachael Brown, School of Medicine, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia e-mail: r.brown@ 123456uws.edu.au

                This article was submitted to Frontiers in Autonomic Neuroscience, a specialty of Frontiers in Neuroscience.

                Article
                10.3389/fnins.2013.00102
                3678085
                23781170
                3b2fb25b-5c39-48b4-9621-3b24d5357bf0
                Copyright © 2013 Brown, Kemp and Macefield.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 24 April 2013
                : 23 May 2013
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 23, Pages: 6, Words: 4130
                Categories
                Neurology
                Original Research Article

                Neurosciences
                autonomic nervous system,muscle sympathetic nerve activity,cardiovascular,exercise,microneurography

                Comments

                Comment on this article