1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      All‐in‐One Zeolite–Carbon‐Based Nanotheranostics with Adjustable NIR‐II Window Photoacoustic/Fluorescence Imaging Performance for Precise NIR‐II Photothermal‐Synergized Catalytic Antitumor Therapy

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II)

          An updated comprehensive review to help researchers understand nanozymes better and in turn to advance the field. Nanozymes are nanomaterials with enzyme-like characteristics ( Chem. Soc. Rev. , 2013, 42 , 6060–6093). They have been developed to address the limitations of natural enzymes and conventional artificial enzymes. Along with the significant advances in nanotechnology, biotechnology, catalysis science, and computational design, great progress has been achieved in the field of nanozymes since the publication of the above-mentioned comprehensive review in 2013. To highlight these achievements, this review first discusses the types of nanozymes and their representative nanomaterials, together with the corresponding catalytic mechanisms whenever available. Then, it summarizes various strategies for modulating the activity and selectivity of nanozymes. After that, the broad applications from biomedical analysis and imaging to theranostics and environmental protection are covered. Finally, the current challenges faced by nanozymes are outlined and the future directions for advancing nanozyme research are suggested. The current review can help researchers know well the current status of nanozymes and may catalyze breakthroughs in this field.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer

            The development, perspectives, and challenges of photothermal therapy (PTT) and photoacoustic imaging (PAI) via nanotheranostics for combating cancer. The nonradiative conversion of light energy into heat (photothermal therapy, PTT) or sound energy (photoacoustic imaging, PAI) has been intensively investigated for the treatment and diagnosis of cancer, respectively. By taking advantage of nanocarriers, both imaging and therapeutic functions together with enhanced tumour accumulation have been thoroughly studied to improve the pre-clinical efficiency of PAI and PTT. In this review, we first summarize the development of inorganic and organic nano photothermal transduction agents (PTAs) and strategies for improving the PTT outcomes, including applying appropriate laser dosage, guiding the treatment via imaging techniques, developing PTAs with absorption in the second NIR window, increasing photothermal conversion efficiency (PCE), and also increasing the accumulation of PTAs in tumours. Second, we introduce the advantages of combining PTT with other therapies in cancer treatment. Third, the emerging applications of PAI in cancer-related research are exemplified. Finally, the perspectives and challenges of PTT and PAI for combating cancer, especially regarding their clinical translation, are discussed. We believe that PTT and PAI having noteworthy features would become promising next-generation non-invasive cancer theranostic techniques and improve our ability to combat cancers.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Small
                Small
                Wiley
                1613-6810
                1613-6829
                October 2021
                September 09 2021
                October 2021
                : 17
                : 41
                : 2103252
                Affiliations
                [1 ]Department of Radiology Third Hospital of Shanxi Medical University Shanxi Bethune Hospital Shanxi Academy of Medical Sciences Tongji Shanxi Hospital Taiyuan 030032 China
                [2 ]College of Chemistry and Chemical Engineering Taiyuan University of Technology Taiyuan 030024 China
                Article
                10.1002/smll.202103252
                3b3e4012-d7f5-403c-8d73-b0bfd33f42f0
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article