+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Genome segregation and packaging machinery in Acanthamoeba polyphaga mimivirus is reminiscent of bacterial apparatus.

      Journal of Biology
      Base Sequence, Biological Evolution, Chromosome Segregation, genetics, Cluster Analysis, DNA Viruses, Genome, Viral, Mimiviridae, Models, Genetic, Molecular Sequence Data, Phylogeny, Sequence Alignment, Species Specificity, Virion, growth & development, Virus Assembly

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Genome packaging is a critical step in the virion assembly process. The putative ATP-driven genome packaging motor of Acanthamoeba polyphaga mimivirus (APMV) and other nucleocytoplasmic large DNA viruses (NCLDVs) is a distant ortholog of prokaryotic chromosome segregation motors, such as FtsK and HerA, rather than other viral packaging motors, such as large terminase. Intriguingly, APMV also encodes other components, i.e., three putative serine recombinases and a putative type II topoisomerase, all of which are essential for chromosome segregation in prokaryotes. Based on our analyses of these components and taking the limited available literature into account, here we propose for the first time a model for genome segregation and packaging in APMV that can possibly be extended to NCLDV subfamilies, except perhaps Poxviridae and Ascoviridae. This model might represent a unique variation of the prokaryotic system acquired and contrived by the large DNA viruses of eukaryotes. It is also consistent with previous observations that unicellular eukaryotes, such as amoebae, are melting pots for the advent of chimeric organisms with novel mechanisms. Extremely large viruses with DNA genomes infect a wide range of eukaryotes, from human beings to amoebae and from crocodiles to algae. These large DNA viruses, unlike their much smaller cousins, have the capability of making most of the protein components required for their multiplication. Once they infect the cell, these viruses set up viral replication centers, known as viral factories, to carry out their multiplication with very little help from the host. Our sequence analyses show that there is remarkable similarity between prokaryotes (bacteria and archaea) and large DNA viruses, such as mimivirus, vaccinia virus, and pandoravirus, in the way that they process their newly synthesized genetic material to make sure that only one copy of the complete genome is generated and is meticulously placed inside the newly synthesized viral particle. These findings have important evolutionary implications about the origin and evolution of large viruses.

          Related collections

          Author and article information


          Comment on this article