10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Kinetics of Nucleotide Binding to Isolated Chlamydomonas Axonemes Using UV-TIRF Microscopy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cilia and flagella are long, slender organelles found in many eukaryotic cells, where they have sensory, developmental, and motile functions. All cilia and flagella contain a microtubule-based structure called the axoneme. In motile cilia and flagella, which drive cell locomotion and fluid transport, the axoneme contains, along most of its length, motor proteins from the axonemal dynein family. These motor proteins drive motility by using energy derived from the hydrolysis of ATP to generate a bending wave, which travels down the axoneme. As a first step toward visualizing the ATPase activity of the axonemal dyneins during bending, we have investigated the kinetics of nucleotide binding to axonemes. Using a specially built ultraviolet total internal reflection fluorescence microscope, we found that the fluorescent ATP analog methylanthraniloyl ATP (mantATP), which has been shown to support axonemal motility, binds all along isolated, immobilized axonemes. By studying the recovery of fluorescence after photobleaching, we found that there are three mantATP binding sites: one that bleaches rapidly (time constant ≈ 1.7 s) and recovers slowly (time constant ≈ 44 s), one that bleaches with the same time constant but does not recover, and one that does not bleach. By reducing the dynein content in the axoneme using mutants and salt extraction, we provide evidence that the slow-recovering component, but not the other components, corresponds to axonemal dyneins. The recovery rate of this component, however, is too slow to be consistent with the activation of beating observed at higher mantATP concentrations; this indicates that the dyneins may be inhibited due to their immobilization at the surface. The development of this method is a first step toward direct observation of the traveling wave of dynein activity.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene.

          Cilia and flagella are microtubule-based structures nucleated by modified centrioles termed basal bodies. These biochemically complex organelles have more than 250 and 150 polypeptides, respectively. To identify the proteins involved in ciliary and basal body biogenesis and function, we undertook a comparative genomics approach that subtracted the nonflagellated proteome of Arabidopsis from the shared proteome of the ciliated/flagellated organisms Chlamydomonas and human. We identified 688 genes that are present exclusively in organisms with flagella and basal bodies and validated these data through a series of in silico, in vitro, and in vivo studies. We then applied this resource to the study of human ciliation disorders and have identified BBS5, a novel gene for Bardet-Biedl syndrome. We show that this novel protein localizes to basal bodies in mouse and C. elegans, is under the regulatory control of daf-19, and is necessary for the generation of both cilia and flagella.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tracing the origins of centrioles, cilia, and flagella

            Centrioles/basal bodies (CBBs) are microtubule-based cylindrical organelles that nucleate the formation of centrosomes, cilia, and flagella. CBBs, cilia, and flagella are ancestral structures; they are present in all major eukaryotic groups. Despite the conservation of their core structure, there is variability in their architecture, function, and biogenesis. Recent genomic and functional studies have provided insight into the evolution of the structure and function of these organelles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              How molecular motors shape the flagellar beat.

              Cilia and eukaryotic flagella are slender cellular appendages whose regular beating propels cells and microorganisms through aqueous media. The beat is an oscillating pattern of propagating bends generated by dynein motor proteins. A key open question is how the activity of the motors is coordinated in space and time. To elucidate the nature of this coordination we inferred the mechanical properties of the motors by analyzing the shape of beating sperm: Steadily beating bull sperm were imaged and their shapes were measured with high precision using a Fourier averaging technique. Comparing our experimental data with wave forms calculated for different scenarios of motor coordination we found that only the scenario of interdoublet sliding regulating motor activity gives rise to satisfactory fits. We propose that the microscopic origin of such "sliding control" is the load dependent detachment rate of motors. Agreement between observed and calculated wave forms was obtained only if significant sliding between microtubules occurred at the base. This suggests a novel mechanism by which changes in basal compliance could reverse the direction of beat propagation. We conclude that the flagellar beat patterns are determined by an interplay of the basal properties of the axoneme and the mechanical feedback of dynein motors.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biophys J
                Biophys. J
                Biophysical Journal
                The Biophysical Society
                0006-3495
                1542-0086
                20 August 2019
                09 July 2019
                : 117
                : 4
                : 679-687
                Affiliations
                [1 ]Yale University, New Haven, Connecticut
                Author notes
                []Corresponding author jonathon.howard@ 123456yale.edu
                Article
                S0006-3495(19)30559-4
                10.1016/j.bpj.2019.07.004
                6712413
                31400919
                3b4c07b4-31e0-4dd6-b56c-13941084ba6a
                © 2019 Biophysical Society.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 11 February 2019
                : 1 July 2019
                Categories
                Articles

                Biophysics
                Biophysics

                Comments

                Comment on this article