17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hepatoprotective effects of litchi ( Litchi chinensis) procyanidin A2 on carbon tetrachloride-induced liver injury in ICR mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Drug tolerance, lacking liver regenerative activity and inconclusive inhibition of steatosis and cirrhosis by silymarin treatment during chronic liver injury have increased the demand for novel alternative or synergistic treatments for liver damage. Litchi fruit is abundant in polyphenolic compounds and is used in traditional Chinese medicine for treatments that include the strengthening of hepatic and pancreatic functions. Unique polyphenolic compounds obtained from litchi pericarp extract (LPE) were studied in vitro and in vivo for hepatoprotection. Epicatechin (EC) and procyanidin A2 (PA2) of LPE were obtained by fractionated-extraction from pulverized litchi pericarps. All fractions, including LPE, were screened against silymarin in carbon tetrachloride (CCl 4)-treated murine embryonic liver cell line (BNL). The effects of daily gavage-feeding of LPE, silymarin (200 mg/kg body weight) or H 2O in CCl 4-intoxicated male ICR mice were evaluated by studying serum chemicals, liver pathology and glutathione antioxidative enzymes. The effects of EC and PA2 on liver cell regenerative activity were investigated using a scratch wound healing assay and flow cytometric cell cycle analysis; the results of which demonstrated that LPE protected BNL from CCl 4-intoxication. Gavage-feeding of LPE decreased serum glutamic oxaloacetate transaminase and glutamic pyruvic transaminase levels, and exhibited superior retention of the hexagonal structure of hepatocytes and reduced necrotic cells following liver histopathological examinations in CCl 4-intoxicated ICR mice. Glutathione peroxidise and glutathione reductase activities were preserved as the normal control level in LPE groups. EC and PA2 were principle components of LPE. PA2 demonstrated liver cell regenerative activity in scratch wound healing assays and alcohol-induced liver cell injury in vitro. The present findings suggest that litchi pericarp polyphenolic extracts, including EC and PA2, may be a synergistic alternative to silymarin in hepatoprotection and liver cell regeneration.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Dietary Polyphenols and Their Biological Significance

          Dietary polyphenols represent a wide variety of compounds that occur in fruits, vegetables, wine, tea, extra virgin olive oil, chocolate and other cocoa products. They are mostly derivatives and/or isomers of flavones, isoflavones, flavonols, catechins and phenolic acids, and possess diverse biological properties such as antioxidant, antiapoptosis, anti-aging, anticarcinogen, anti-inflammation, anti-atherosclerosis, cardiovascular protection, improvement of the endothelial function, as well as inhibition of angiogenesis and cell proliferation activity. Most of these biological actions have been attributed to their intrinsic reducing capabilities. They may also offer indirect protection by activating endogenous defense systems and by modulating cellular signaling processes such as nuclear factor-kappa B (NF-κB) activation, activator protein-1(AP-1) DNA binding, glutathione biosynthesis, phosphoinositide 3 (PI3)-kinase/protein kinase B (Akt) pathway, mitogen-activated protein kinase (MAPK) proteins [extracellular signal-regulated protein kinase (ERK), c-jun N-terminal kinase (JNK) and P38 ] activation, and the translocation into the nucleus of nuclear factor erythroid 2 related factor 2 (Nrf2). This paper covers the most recent literature on the subject, and describes the biological mechanisms of action and protective effects of dietary polyphenols.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives

            Silymarin (SM), an extract from the Silybum marianum (milk thistle) plant containing various flavonolignans (with silybin being the major one), has received a tremendous amount of attention over the last decade as a herbal remedy for liver treatment. In many cases, the antioxidant properties of SM are considered to be responsible for its protective actions. Possible antioxidant mechanisms of SM are evaluated in this review. (1) Direct scavenging free radicals and chelating free Fe and Cu are mainly effective in the gut. (2) Preventing free radical formation by inhibiting specific ROS-producing enzymes, or improving an integrity of mitochondria in stress conditions, are of great importance. (3) Maintaining an optimal redox balance in the cell by activating a range of antioxidant enzymes and non-enzymatic antioxidants, mainly via Nrf2 activation is probably the main driving force of antioxidant (AO)  action of SM. (4) Decreasing inflammatory responses by inhibiting NF-κB pathways is an emerging mechanism of SM protective effects in liver toxicity and various liver diseases. (5) Activating vitagenes, responsible for synthesis of protective molecules, including heat shock proteins (HSPs), thioredoxin and sirtuins and providing additional protection in stress conditions deserves more attention. (6) Affecting the microenvironment of the gut, including SM-bacteria interactions, awaits future investigations. (7) In animal nutrition and disease prevention strategy, SM alone, or in combination with other hepatho-active compounds (carnitine, betaine, vitamin B12, etc.), might have similar hepatoprotective effects as described in human nutrition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hepatoprotective herbal drug, silymarin from experimental pharmacology to clinical medicine.

              Silymarin, a flavonolignan from 'milk thistle' (Silybum marianum) plant is used almost exclusively for hepatoprotection and amounts to 180 million US dollars business in Germany alone. In this review we discuss about its safety, efficacy and future uses in liver diseases. The use of silymarin may replace the polyherbal formulations and will avoid the major problems of standardization, quality control and contamination with heavy metals or bacterial toxins. Silymarin consists of four flavonolignan isomers namely--silybin, isosilybin, silydianin and silychristin. Among them, silybin being the most active and commonly used. Silymarin is orally absorbed and is excreted mainly through bile as sulphates and conjugates. Silymarin offers good protection in various toxic models of experimental liver diseases in laboratory animals. It acts by antioxidative, anti-lipid peroxidative, antifibrotic, anti-inflammatory, membrane stabilizing, immunomodulatory and liver regenerating mechanisms. Silymarin has clinical applications in alcoholic liver diseases, liver cirrhosis, Amanita mushroom poisoning, viral hepatitis, toxic and drug induced liver diseases and in diabetic patients. Though silymarin does not have antiviral properties against hepatitis virus, it promotes protein synthesis, helps in regenerating liver tissue, controls inflammation, enhances glucuronidation and protects against glutathione depletion. Silymarin may prove to be a useful drug for hepatoprotection in hepatobiliary diseases and in hepatotoxicity due to drugs. The non traditional use of silymarin may make a breakthrough as a new approach to protect other organs in addition to liver. As it is having a good safety profile, better patient tolerability and an effective drug at an affordable price, in near future new derivatives or new combinations of this drug may prove to be useful.
                Bookmark

                Author and article information

                Journal
                Exp Ther Med
                Exp Ther Med
                ETM
                Experimental and Therapeutic Medicine
                D.A. Spandidos
                1792-0981
                1792-1015
                June 2017
                18 April 2017
                18 April 2017
                : 13
                : 6
                : 2839-2847
                Affiliations
                [1 ]Department of Microbiology, Immunology and Biopharmaceutics, College of Life Sciences, National Chiayi University, Chiayi 60004, Taiwan, R.O.C.
                [2 ]Department of Hospitality, College of Applied Life, Nan Jeon University of Science and Technology, Tainan 73746, Taiwan, R.O.C.
                Author notes
                Correspondence to: Professor Brian Bor-Chun Weng, Department of Microbiology, Immunology and Biopharmaceutics, College of Life Sciences, National Chiayi University, 300 University Road, Chiayi 60004, Taiwan, R.O.C., E-mail: brian@ 123456mail.ncyu.edu.tw
                Article
                ETM-0-0-4358
                10.3892/etm.2017.4358
                5450617
                28587348
                3b5a6278-0906-442b-9da2-1a4ac7641d5b
                Copyright: © Chen et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 08 December 2015
                : 23 December 2016
                Categories
                Articles

                Medicine
                carbon tetrachloride,litchi,lychee,liver injury,procyanidin,epicatechin,hepatoprotection
                Medicine
                carbon tetrachloride, litchi, lychee, liver injury, procyanidin, epicatechin, hepatoprotection

                Comments

                Comment on this article