18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact on Physical Fitness of the Chinese CHAMPS: A Clustered Randomized Controlled Trial

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: School physical activity (PA) policy, physical education curriculum, teacher training, knowledge of physical fitness, and parental support are among the key issues underlying the declining trend of physical fitness in children and adolescents. The Chinese CHAMPS was a multi-faceted intervention program to maximize the opportunities for moderate and vigorous physical activity (MVPA), and increase physical fitness in middle school students. The purpose of the study was to test whether the levels of modification in school physical education policy and curriculum incrementally influenced the changes in cardiorespiratory fitness and other physical fitness outcomes. Methods: This 8-month study was a clustered randomized controlled trial using a 2 × 2 factorial design. The participants were 680 7th grade students (mean age = 12.66 years) enrolled in 12 middle schools that were randomly assigned to one of four treatment conditions: school physical education intervention (SPE), afterschool program intervention (ASP), SPE+ASP, and control. Targeted behaviors of the Chinese CHAMPS were the student’s sedentary behavior and MVPA. The study outcomes were assessed by a test battery of physical fitness at the baseline and posttest. Sedentary behavior and MVPA were measured in randomly selected students using observations and accelerometry. Results: The terms contrasting the pooled effect of SPE, ASP, and SPE+ASP vs. Control, the pooled effect of SPE and SPE+ASP vs. ASP only, and the effect of SPE+ASP vs. ASP on CRF and other physical fitness outcomes were all significant after adjusting for covariates, supporting the study hypothesis. Process evaluation demonstrated high fidelity of the intervention in the targeted students’ behaviors. Conclusions: Chinese CHAMPS demonstrated the impact of varying the amount of MVPA and vigorous physical activity (VPA) on the physical fitness in middle school students in support of the need to increase the opportunity for PA in schools and to introduce high-intensity exercises in school-based PA programs. Modification of school policy, quality of physical education curriculum, and teacher training were important moderators of the improvement in physical fitness. (Trial registration: ChiCTR-IOR-14005388, the Childhood Health; Activity and Motor Performance Study).

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          Physical fitness in childhood and adolescence: a powerful marker of health.

          This review aims to summarize the latest developments with regard to physical fitness and several health outcomes in young people. The literature reviewed suggests that (1) cardiorespiratory fitness levels are associated with total and abdominal adiposity; (2) both cardiorespiratory and muscular fitness are shown to be associated with established and emerging cardiovascular disease risk factors; (3) improvements in muscular fitness and speed/agility, rather than cardiorespiratory fitness, seem to have a positive effect on skeletal health; (4) both cardiorespiratory and muscular fitness enhancements are recommended in pediatric cancer patients/survivors in order to attenuate fatigue and improve their quality of life; and (5) improvements in cardiorespiratory fitness have positive effects on depression, anxiety, mood status and self-esteem, and seem also to be associated with a higher academic performance. In conclusion, health promotion policies and physical activity programs should be designed to improve cardiorespiratory fitness, but also two other physical fitness components such us muscular fitness and speed/agility. Schools may play an important role by identifying children with low physical fitness and by promoting positive health behaviors such as encouraging children to be active, with special emphasis on the intensity of the activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6 to 18.

            The World Health Organization (WHO) estimates that 1.9 million deaths worldwide are attributable to physical inactivity and at least 2.6 million deaths are a result of being overweight or obese. In addition, WHO estimates that physical inactivity causes 10% to 16% of cases each of breast cancer, colon, and rectal cancers as well as type 2 diabetes, and 22% of coronary heart disease and the burden of these and other chronic diseases has rapidly increased in recent decades. The purpose of this systematic review was to summarize the evidence of the effectiveness of school-based interventions in promoting physical activity and fitness in children and adolescents. The search strategy included searching several databases to October 2011. In addition, reference lists of included articles and background papers were reviewed for potentially relevant studies, as well as references from relevant Cochrane reviews. Primary authors of included studies were contacted as needed for additional information. To be included, the intervention had to be relevant to public health practice (focused on health promotion activities), not conducted by physicians, implemented, facilitated, or promoted by staff in local public health units, implemented in a school setting and aimed at increasing physical activity, included all school-attending children, and be implemented for a minimum of 12 weeks. In addition, the review was limited to randomized controlled trials and those that reported on outcomes for children and adolescents (aged 6 to 18 years). Primary outcomes included: rates of moderate to vigorous physical activity during the school day, time engaged in moderate to vigorous physical activity during the school day, and time spent watching television. Secondary outcomes related to physical health status measures including: systolic and diastolic blood pressure, blood cholesterol, body mass index (BMI), maximal oxygen uptake (VO2max), and pulse rate. Standardized tools were used by two independent reviewers to assess each study for relevance and for data extraction. In addition, each study was assessed for risk of bias as specified in the Cochrane Handbook for Systematic Reviews of Interventions. Where discrepancies existed, discussion occurred until consensus was reached. The results were summarized narratively due to wide variations in the populations, interventions evaluated, and outcomes measured. In the original review, 13,841 records were identified and screened, 302 studies were assessed for eligibility, and 26 studies were included in the review. There was some evidence that school-based physical activity interventions had a positive impact on four of the nine outcome measures. Specifically positive effects were observed for duration of physical activity, television viewing, VO2 max, and blood cholesterol. Generally, school-based interventions had little effect on physical activity rates, systolic and diastolic blood pressure, BMI, and pulse rate. At a minimum, a combination of printed educational materials and changes to the school curriculum that promote physical activity resulted in positive effects.In this update, given the addition of three new inclusion criteria (randomized design, all school-attending children invited to participate, minimum 12-week intervention) 12 of the original 26 studies were excluded. In addition, studies published between July 2007 and October 2011 evaluating the effectiveness of school-based physical interventions were identified and if relevant included. In total an additional 2378 titles were screened of which 285 unique studies were deemed potentially relevant. Of those 30 met all relevance criteria and have been included in this update. This update includes 44 studies and represents complete data for 36,593 study participants. Duration of interventions ranged from 12 weeks to six years.Generally, the majority of studies included in this update, despite being randomized controlled trials, are, at a minimum, at moderate risk of bias. The results therefore must be interpreted with caution. Few changes in outcomes were observed in this update with the exception of blood cholesterol and physical activity rates. For example blood cholesterol was no longer positively impacted upon by school-based physical activity interventions. However, there was some evidence to suggest that school-based physical activity interventions led to an improvement in the proportion of children who engaged in moderate to vigorous physical activity during school hours (odds ratio (OR) 2.74, 95% confidence interval (CI), 2.01 to 3.75). Improvements in physical activity rates were not observed in the original review. Children and adolescents exposed to the intervention also spent more time engaged in moderate to vigorous physical activity (with results across studies ranging from five to 45 min more), spent less time watching television (results range from five to 60 min less per day), and had improved VO2max (results across studies ranged from 1.6 to 3.7 mL/kg per min). However, the overall conclusions of this update do not differ significantly from those reported in the original review. The evidence suggests the ongoing implementation of school-based physical activity interventions at this time, given the positive effects on behavior and one physical health status measure. However, given these studies are at a minimum of moderate risk of bias, and the magnitude of effect is generally small, these results should be interpreted cautiously. Additional research on the long-term impact of these interventions is needed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              What childhood obesity prevention programmes work? A systematic review and meta-analysis.

              Previous reviews of childhood obesity prevention have focused largely on schools and findings have been inconsistent. Funded by the US Agency for Healthcare Research and Quality (AHRQ) and the National Institutes of Health, we systematically evaluated the effectiveness of childhood obesity prevention programmes conducted in high-income countries and implemented in various settings. We searched MEDLINE®, Embase, PsycINFO, CINAHL®, ClinicalTrials.gov and the Cochrane Library from inception through 22 April 2013 for relevant studies, including randomized controlled trials, quasi-experimental studies and natural experiments, targeting diet, physical activity or both, and conducted in children aged 2-18 in high-income countries. Two reviewers independently abstracted the data. The strength of evidence (SOE) supporting interventions was graded for each study setting (e.g. home, school). Meta-analyses were performed on studies judged sufficiently similar and appropriate to pool using random effect models. This paper reported our findings on various adiposity-related outcomes. We identified 147 articles (139 intervention studies) of which 115 studies were primarily school based, although other settings could have been involved. Most were conducted in the United States and within the past decade. SOE was high for physical activity-only interventions delivered in schools with home involvement or combined diet-physical activity interventions delivered in schools with both home and community components. SOE was moderate for school-based interventions targeting either diet or physical activity, combined interventions delivered in schools with home or community components or combined interventions delivered in the community with a school component. SOE was low for combined interventions in childcare or home settings. Evidence was insufficient for other interventions. In conclusion, at least moderately strong evidence supports the effectiveness of school-based interventions for preventing childhood obesity. More research is needed to evaluate programmes in other settings or of other design types, especially environmental, policy and consumer health informatics-oriented interventions.
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                11 November 2019
                November 2019
                : 16
                : 22
                : 4412
                Affiliations
                [1 ]Institute for Sport Performance and Health Promotion, Capital University of Sports and Physical Education, Beijing 100191, China; yinjun@ 123456cupes.edu.cn (J.Y.); fuquan@ 123456cupes.edu.cn (Q.F.); lan13865352845@ 123456163.com (T.L.)
                [2 ]Department of Kinesiology, Health and Nutrition, the University of Texas at San Antonio, San Antonio, TX 78249, USA; Shiyu.li@ 123456utsa.edu (S.L.); Jeffrey.Howard@ 123456utsa.edu (J.H.); Zenong.Yin@ 123456utsa.edu (Z.Y.)
                [3 ]School of Sport Sciences, Beijing Sport University, Beijing 10089, China; renhong@ 123456bsu.edu.cn
                [4 ]College of Physical Education, Anhui Normal University, Wuhu 241000, China; asdjt@ 123456ahnu.edu.cn
                [5 ]College of Sports Science, Hefei Normal University, Hefei 230061, China; zhujiahua@ 123456hfnu.edu.cn
                Author notes
                Author information
                https://orcid.org/0000-0003-3369-1429
                Article
                ijerph-16-04412
                10.3390/ijerph16224412
                6888011
                31718019
                3b5cef65-7f98-4378-9692-9bb74dc1b76e
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 12 October 2019
                : 05 November 2019
                Categories
                Article

                Public health
                cardiorespiratory fitness,socioecological model,physical functional training,high-intensity physical activity

                Comments

                Comment on this article

                scite_

                Similar content173

                Cited by3

                Most referenced authors1,358