14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Current Use of Stem Cells in Bladder Tissue Regeneration and Bioengineering

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many pathological processes including neurogenic bladder and malignancy necessitate bladder reconstruction, which is currently performed using intestinal tissue. The use of intestinal tissue, however, subjects patients to metabolic abnormalities, bladder stones, and other long-term sequelae, raising the need for a source of safe and reliable bladder tissue. Advancements in stem cell biology have catapulted stem cells to the center of many current tissue regeneration and bioengineering strategies. This review presents the recent advancements in the use of stem cells in bladder tissue bioengineering.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Urine derived cells are a potential source for urological tissue reconstruction.

          Contemporary approaches to tissue engineering and cell therapy for urinary tract reconstruction require invasive tissue biopsies to obtain autologous cells. However, these procedures are associated with potential complications. We determined whether the cells present in urine have characteristics of normal bladder cells and investigated their potential uses for urological reconstructive procedures. A total of 55 urine samples were collected from 15 healthy individuals and 8 patients with vesicoureteral reflux. Urine derived cells were isolated, expanded and tested for progenitor and differentiated cell specific markers using flow cytometry, immunofluorescence and Western immunoblotting. The chromosomal stability of cultured urine derived cells was determined by karyotype analysis. Clones were successfully established from primary cultures of urine derived cells. Isolated cells showed 3 phenotypes, including fully differentiated, differentiating and progenitor-like cells. Some urine derived cells stained positive for the surface markers c-Kit, SSEA4, CD105, CD73, CD91, CD133 and CD44. Two to 7 cells per 100 ml urine were multipoint progenitors that could expand extensively in culture. Single progenitor cells had the ability to differentiate into the cell lineages expressing urothelial, smooth muscle, endothelial and interstitial cell markers. The expression of lineage markers was characterized by Western blot and immunofluorescence analysis. Urine derived cells also maintained a normal karyotype after serial culture. A subpopulation of cells isolated from urine had progenitor cell features and the potential to differentiate into several bladder cell lineages. Urine derived cells could serve as an alternative cell source for urinary tract tissue engineering and reconstruction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell biology and physiology of the uroepithelium.

            The uroepithelium sits at the interface between the urinary space and underlying tissues, where it forms a high-resistance barrier to ion, solute, and water flux, as well as pathogens. However, the uroepithelium is not simply a passive barrier; it can modulate the composition of the urine, and it functions as an integral part of a sensory web in which it receives, amplifies, and transmits information about its external milieu to the underlying nervous and muscular systems. This review examines our understanding of uroepithelial regeneration and how specializations of the outermost umbrella cell layer, including tight junctions, surface uroplakins, and dynamic apical membrane exocytosis/endocytosis, contribute to barrier function and how they are co-opted by uropathogenic bacteria to infect the uroepithelium. Furthermore, we discuss the presence and possible functions of aquaporins, urea transporters, and multiple ion channels in the uroepithelium. Finally, we describe potential mechanisms by which the uroepithelium can transmit information about the urinary space to the other tissues in the bladder proper.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion.

              The objective of this study was to generate bacterial cellulose (BC) scaffolds seeded with human urine-derived stem cells (USC) to form a tissue-engineered conduit for use in urinary diversion. Microporous BC scaffolds were synthesized and USC were induced to differentiate into urothelial and smooth muscle cells (SMC). Induced USC (10(6) cells/cm(2)) were seeded onto BC under static and 3D dynamic (10 or 40 RPM) conditions and cultured for 2 weeks. The urothelial cells and SMC derived from USC formed multilayers on the BC scaffold surface, and some cells infiltrated into the scaffold. The urothelium derived from USC differentiation expressed urothelial markers (uroplakin Ia and AE1/AE3) and the SMC expressed SMC markers (α-smooth muscle actin and desmin). In addition, USC/BC scaffold constructs were implanted into athymic mice, and the cells were tracked using immunohistochemical staining for human nuclear antigen. In vivo, the cells appeared to differentiate and express urothelial and SMC markers. In conclusion, porous BC scaffolds allow 3 dimensional growth of USC, leading to formation of a multilayered urothelium and cell-matrix infiltration. Thus, cell-seeded BC scaffolds hold promise for use in tissue-engineered urinary conduits for urinary reconstruction. Copyright © 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Biomedicines
                Biomedicines
                biomedicines
                Biomedicines
                MDPI
                2227-9059
                06 January 2017
                March 2017
                : 5
                : 1
                : 4
                Affiliations
                [1 ]Department of Urology, Davis School of Medicine, University of California, Sacramento, CA 95817, USA; yychan@ 123456ucdavis.edu (Y.Y.C.); sksandlin@ 123456ucdavis.edu (S.K.S.); eakurzrock@ 123456ucdavis.edu (E.A.K.)
                [2 ]Stem Cell Program, Institute for Regenerative Cures, University of California, Davis Medical Center, Sacramento, CA 95817, USA
                Author notes
                [* ]Correspondence: sosborn@ 123456ucdavis.edu ; Tel.: +1-916-703-9385
                Article
                biomedicines-05-00004
                10.3390/biomedicines5010004
                5423492
                28536347
                3b61e80d-9b92-4a08-90f7-622d7aa98b9e
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 31 October 2016
                : 26 December 2016
                Categories
                Review

                urothelium,tissue engineering,bladder,stem cells
                urothelium, tissue engineering, bladder, stem cells

                Comments

                Comment on this article