45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Polio eradication. Efficacy of inactivated poliovirus vaccine in India.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inactivated poliovirus vaccine (IPV) is efficacious against paralytic disease, but its effect on mucosal immunity is debated. We assessed the efficacy of IPV in boosting mucosal immunity. Participants received IPV, bivalent 1 and 3 oral poliovirus vaccine (bOPV), or no vaccine. A bOPV challenge was administered 4 weeks later, and excretion was assessed 3, 7, and 14 days later. Nine hundred and fifty-four participants completed the study. Any fecal shedding of poliovirus type 1 was 8.8, 9.1, and 13.5% in the IPV group and 14.4, 24.1, and 52.4% in the control group by 6- to 11-month, 5-year, and 10-year groups, respectively (IPV versus control: Fisher's exact test P < 0.001). IPV reduced excretion for poliovirus types 1 and 3 between 38.9 and 74.2% and 52.8 and 75.7%, respectively. Thus, IPV in OPV-vaccinated individuals boosts intestinal mucosal immunity.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Systematic Review of Mucosal Immunity Induced by Oral and Inactivated Poliovirus Vaccines against Virus Shedding following Oral Poliovirus Challenge

          Inactivated poliovirus vaccine (IPV) may be used in mass vaccination campaigns during the final stages of polio eradication. It is also likely to be adopted by many countries following the coordinated global cessation of vaccination with oral poliovirus vaccine (OPV) after eradication. The success of IPV in the control of poliomyelitis outbreaks will depend on the degree of nasopharyngeal and intestinal mucosal immunity induced against poliovirus infection. We performed a systematic review of studies published through May 2011 that recorded the prevalence of poliovirus shedding in stool samples or nasopharyngeal secretions collected 5–30 days after a “challenge” dose of OPV. Studies were combined in a meta-analysis of the odds of shedding among children vaccinated according to IPV, OPV, and combination schedules. We identified 31 studies of shedding in stool and four in nasopharyngeal samples that met the inclusion criteria. Individuals vaccinated with OPV were protected against infection and shedding of poliovirus in stool samples collected after challenge compared with unvaccinated individuals (summary odds ratio [OR] for shedding 0.13 (95% confidence interval [CI] 0.08–0.24)). In contrast, IPV provided no protection against shedding compared with unvaccinated individuals (summary OR 0.81 [95% CI 0.59–1.11]) or when given in addition to OPV, compared with individuals given OPV alone (summary OR 1.14 [95% CI 0.82–1.58]). There were insufficient studies of nasopharyngeal shedding to draw a conclusion. IPV does not induce sufficient intestinal mucosal immunity to reduce the prevalence of fecal poliovirus shedding after challenge, although there was some evidence that it can reduce the quantity of virus shed. The impact of IPV on poliovirus transmission in countries where fecal-oral spread is common is unknown but is likely to be limited compared with OPV.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New strategies for the elimination of polio from India.

            The feasibility of global polio eradication is being questioned as a result of continued transmission in a few localities that act as sources for outbreaks elsewhere. Perhaps the greatest challenge is in India, where transmission has persisted in Uttar Pradesh and Bihar despite high coverage with multiple doses of vaccine. We estimate key parameters governing the seasonal epidemics in these areas and show that high population density and poor sanitation cause persistence by not only facilitating transmission of poliovirus but also severely compromising the efficacy of the trivalent vaccine. We analyze strategies to counteract this and show that switching to monovalent vaccine may finally interrupt virus transmission.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Priming after a fractional dose of inactivated poliovirus vaccine.

              To reduce the costs of maintaining a poliovirus immunization base in low-income areas, we assessed the extent of priming immune responses after the administration of inactivated poliovirus vaccine (IPV). We compared the immunogenicity and reactogenicity of a fractional dose of IPV (one fifth of a full dose) administered intradermally with a full dose administered intramuscularly in Cuban infants at the ages of 4 and 8 months. Blood was collected from infants at the ages of 4 months, 8 months, 8 months 7 days, and 8 months 30 days to assess single-dose seroconversion, single-dose priming of immune responses, and two-dose seroconversion. Specimens were tested with a neutralization assay. A total of 320 infants underwent randomization, and 310 infants (96.9%) fulfilled the study requirements. In the group receiving the first fractional dose of IPV, seroconversion to poliovirus types 1, 2, and 3 occurred in 16.6%, 47.1%, and 14.7% of participants, respectively, as compared with 46.6%, 62.8%, and 32.0% in the group receiving the first full dose of IPV (P<0.008 for all comparisons). A priming immune response to poliovirus types 1, 2, and 3 occurred in 90.8%, 94.0%, and 89.6% of participants, respectively, in the group receiving the fractional dose as compared with 97.6%, 98.3%, and 98.1% in the group receiving the full dose (P=0.01 for the comparison with type 3). After the administration of the second dose of IPV in the group receiving fractional doses, cumulative two-dose seroconversion to poliovirus types 1, 2, and 3 occurred in 93.6%, 98.1%, and 93.0% of participants, respectively, as compared with 100.0%, 100.0%, and 99.4% in the group receiving the full dose (P<0.006 for the comparisons of types 1 and 3). The group receiving intradermal injections had the greatest number of adverse events, most of which were minor in intensity and none of which had serious consequences. This evaluation shows that vaccinating infants with a single fractional dose of IPV can induce priming and seroconversion in more than 90% of immunized infants. (Funded by the World Health Organization and the Pan American Health Organization; Australian New Zealand Clinical Trials Registry number, ACTRN12610001046099.).
                Bookmark

                Author and article information

                Journal
                Science
                Science (New York, N.Y.)
                1095-9203
                0036-8075
                Aug 22 2014
                : 345
                : 6199
                Affiliations
                [1 ] World Health Organization, India-National Polio Surveillance Project, R. K. Khanna Stadium, Africa Avenue, Safdarjung Enclave, New Delhi 110029, India.
                [2 ] Enterovirus Research Center, Haffkine Institute Compound, Parel, Mumbai, India.
                [3 ] World Health Organization, Ave Appia, Geneva, Switzerland. sutterr@who.int.
                [4 ] World Health Organization, Ave Appia, Geneva, Switzerland.
                [5 ] Panacea Biotec Ltd., New Delhi, India.
                [6 ] Centers for Disease Control and Prevention, Atlanta, GA, USA.
                [7 ] Department of Infectious Disease Epidemiology, Imperial College London, London, UK.
                Article
                345/6199/922
                10.1126/science.1255006
                25146288
                3b699899-7e50-46e2-a0d2-eaf3364028dd
                Copyright © 2014, American Association for the Advancement of Science.
                History

                Comments

                Comment on this article