62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Behavioral and neurogenomic transcriptome changes in wild-derived zebrafish with fluoxetine treatment

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Stress and anxiety-related behaviors are seen in many organisms. Studies have shown that in humans and other animals, treatment with selective serotonin reuptake inhibitors (e.g. fluoxetine) can reduce anxiety and anxiety-related behaviors. The efficacies and side effects, however, can vary between individuals. Fluoxetine can modulate anxiety in a stereospecific manner or with equal efficacy regardless of stereoisomer depending on the mechanism of action (e.g. serotonergic or GABAergic effects). Zebrafish are an emerging and valuable translational model for understanding human health related issues such as anxiety. In this study we present data showing the behavioral and whole brain transcriptome changes with fluoxetine treatment in wild-derived zebrafish and suggest additional molecular mechanisms of this widely-prescribed drug.

          Results

          We used automated behavioral analyses to assess the effects of racemic and stereoisomeric fluoxetine on male wild-derived zebrafish. Both racemic and the individual isomers of fluoxetine reduced anxiety-related behaviors relative to controls and we did not observe stereospecific fluoxetine effects. Using RNA-sequencing of the whole brain, we identified 411 genes showing differential expression with racemic fluoxetine treatment. Several neuropeptides (neuropeptide Y, isotocin, urocortin 3, prolactin) showed consistent expression patterns with the alleviation of stress and anxiety when anxiety-related behavior was reduced with fluoxetine treatment. With gene ontology and KEGG pathway analyses, we identified lipid and amino acid metabolic processes, and steroid biosynthesis among other terms to be over-enriched.

          Conclusion

          Our results demonstrate that fluoxetine reduces anxiety-related behaviors in wild-derived zebrafish and alters their neurogenomic state. We identify two biological processes, lipid and amino acid metabolic synthesis that characterize differences in the fluoxetine treated fish. Fluoxetine may be acting on several different molecular pathways to reduce anxiety-related behaviors in wild-derived zebrafish. This study provides data that could help identify common molecular mechanisms of fluoxetine action across animal taxa.

          Related collections

          Most cited references 110

          • Record: found
          • Abstract: found
          • Article: not found

          Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR

          Quantitative real-time PCR (qPCR) is a commonly used validation tool for confirming gene expression results obtained from microarray analysis; however, microarray and qPCR data often result in disagreement. The current study assesses factors contributing to the correlation between these methods in five separate experiments employing two-color 60-mer oligonucleotide microarrays and qPCR using SYBR green. Overall, significant correlation was observed between microarray and qPCR results (ρ=0.708, p 0.80 consistently observed when quality scores are applied.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish.

            The zebrafish (Danio rerio) is emerging as a promising model organism for experimental studies of stress and anxiety. Here we further validate zebrafish models of stress by analyzing how environmental and pharmacological manipulations affect their behavioral and physiological phenotypes. Experimental manipulations included exposure to alarm pheromone, chronic exposure to fluoxetine, acute exposure to caffeine, as well as acute and chronic exposure to ethanol. Acute (but not chronic) alarm pheromone and acute caffeine produced robust anxiogenic effects, including reduced exploration, increased erratic movements and freezing behavior in zebrafish tested in the novel tank diving test. In contrast, ethanol and fluoxetine had robust anxiolytic effects, including increased exploration and reduced erratic movements. The behavior of several zebrafish strains was also quantified to ascertain differences in their behavioral profiles, revealing high-anxiety (leopard, albino) and low-anxiety (wild type) strains. We also used LocoScan (CleverSys Inc.) video-tracking tool to quantify anxiety-related behaviors in zebrafish, and dissect anxiety-related phenotypes from locomotor activity. Finally, we developed a simple and effective method of measuring zebrafish physiological stress responses (based on a human salivary cortisol assay), and showed that alterations in whole-body cortisol levels in zebrafish parallel behavioral indices of anxiety. Collectively, our results confirm zebrafish as a valid, reliable, and high-throughput model of stress and affective disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Statistical design and analysis of RNA sequencing data.

              Next-generation sequencing technologies are quickly becoming the preferred approach for characterizing and quantifying entire genomes. Even though data produced from these technologies are proving to be the most informative of any thus far, very little attention has been paid to fundamental design aspects of data collection and analysis, namely sampling, randomization, replication, and blocking. We discuss these concepts in an RNA sequencing framework. Using simulations we demonstrate the benefits of collecting replicated RNA sequencing data according to well known statistical designs that partition the sources of biological and technical variation. Examples of these designs and their corresponding models are presented with the goal of testing differential expression.
                Bookmark

                Author and article information

                Journal
                BMC Genomics
                BMC Genomics
                BMC Genomics
                BioMed Central
                1471-2164
                2013
                24 May 2013
                : 14
                : 348
                Affiliations
                [1 ]Department of Biology, North Carolina State University, Box 7617, Raleigh, NC 27695-7617, USA
                [2 ]WM Keck Center for Behavioral Biology, North Carolina State University, Box 7617, Raleigh, NC 27695-7617, USA
                Article
                1471-2164-14-348
                10.1186/1471-2164-14-348
                3667115
                23706039
                Copyright ©2013 Wong et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Research Article

                Genetics

                fluoxetine, anxiety, stress, ssri, genomic, brain, rna-sequencing, zebrafish, serotonin, gaba

                Comments

                Comment on this article