39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dosimetric comparison of the helical tomotherapy, volumetric-modulated arc therapy and fixed-field intensity-modulated radiotherapy for stage IIB-IIIB non-small cell lung cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The study aimed to compare the dosimetric parameters to target dose coverage and the critical structures in the treatment planning of helical tomotherapy (TOMO), volumetric-modulated arc therapy (VMAT), and fixed-field intensity-modulated radiotherapy (IMRT) for NSCLC delivering conventionally fractionated radiotherapy. Thirty patients with pathologically confirmed NSCLC were included. Three radiation treatment plans were designed for each patient. All patients received the uniform prescription dose of 60 Gy to the planning target volume. The conformity index (CI), heterogeneity index (HI), and parameters of critical structures were calculated. A significantly superior mean CI was observed in VMAT than in TOMO or IMRT ( P = 0.013, 0.001). Mean HI was also better using VAMT or IMRT than TOMO ( P = 0.002, 0.003). Mean lung V 20 and V 30 were significantly reduced by TOMO compared to IMRT ( P = 0.019, 0.029). The heart was spared by IMRT compared to TOMO in terms of mean heart dose, V 5, V 10, and V 20 ( P < 0.05). In larger tumor, VMAT provided the optimal dose distribution and sparing to heart. Compared to TOMO and IMRT, VMAT achieved better target dose distribution and similar sparing of critical structures. VMAT seemed to be the optimal technique for NSCLC.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study

          The Lancet Oncology, 16(2), 187-199
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Volumetric modulated arc therapy: IMRT in a single gantry arc.

            In this work a novel plan optimization platform is presented where treatment is delivered efficiently and accurately in a single dynamically modulated arc. Improvements in patient care achieved through image-guided positioning and plan adaptation have resulted in an increase in overall treatment times. Intensity-modulated radiation therapy (IMRT) has also increased treatment time by requiring a larger number of beam directions, increased monitor units (MU), and, in the case of tomotherapy, a slice-by-slice delivery. In order to maintain a similar level of patient throughput it will be necessary to increase the efficiency of treatment delivery. The solution proposed here is a novel aperture-based algorithm for treatment plan optimization where dose is delivered during a single gantry arc of up to 360 deg. The technique is similar to tomotherapy in that a full 360 deg of beam directions are available for optimization but is fundamentally different in that the entire dose volume is delivered in a single source rotation. The new technique is referred to as volumetric modulated arc therapy (VMAT). Multileaf collimator (MLC) leaf motion and number of MU per degree of gantry rotation is restricted during the optimization so that gantry rotation speed, leaf translation speed, and dose rate maxima do not excessively limit the delivery efficiency. During planning, investigators model continuous gantry motion by a coarse sampling of static gantry positions and fluence maps or MLC aperture shapes. The technique presented here is unique in that gantry and MLC position sampling is progressively increased throughout the optimization. Using the full gantry range will theoretically provide increased flexibility in generating highly conformal treatment plans. In practice, the additional flexibility is somewhat negated by the additional constraints placed on the amount of MLC leaf motion between gantry samples. A series of studies are performed that characterize the relationship between gantry and MLC sampling, dose modeling accuracy, and optimization time. Results show that gantry angle and MLC sample spacing as low as 1 deg and 0.5 cm, respectively, is desirable for accurate dose modeling. It is also shown that reducing the sample spacing dramatically reduces the ability of the optimization to arrive at a solution. The competing benefits of having small and large sample spacing are mutually realized using the progressive sampling technique described here. Preliminary results show that plans generated with VMAT optimization exhibit dose distributions equivalent or superior to static gantry IMRT. Timing studies have shown that the VMAT technique is well suited for on-line verification and adaptation with delivery times that are reduced to approximately 1.5-3 min for a 200 cGy fraction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note.

              I Paddick (2000)
              A conformity index is a measure of how well the volume of a radiosurgical dose distribution conforms to the size and shape of a target volume. Because the success of radiosurgery is related to the extremely conformal irradiation of the target, an accurate method for describing this parameter is important. Existing conformity ratios and indices used in radiosurgery are reviewed and criticized. It will be demonstrated that previously proposed measurements of conformity can, under certain conditions, give false perfect scores. A new conformity index is derived that gives an objective score of conformity for a treatment plan and gives no false scores. An analysis of five different treatment plans is made using both the existing scoring methods and the new conformity index.
                Bookmark

                Author and article information

                Contributors
                chenming@zjcc.org.cn
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                1 November 2017
                1 November 2017
                2017
                : 7
                : 14863
                Affiliations
                [1 ]ISNI 0000 0004 1762 8363, GRID grid.452666.5, Department of Radiation Oncology, , The Second Affiliated Hospital of Soochow University, ; Suzhou, China
                [2 ]ISNI 0000 0004 1808 0985, GRID grid.417397.f, Department of Radiation Oncology, , Zhejiang Cancer Hospital, ; Hangzhou, China
                [3 ]ISNI 0000 0001 2291 4776, GRID grid.240145.6, Department of Radiation Oncology, , The University of Texas, M. D. Anderson Cancer Center, ; Houston, USA
                [4 ]ISNI 0000 0004 1808 0985, GRID grid.417397.f, Department of Radiation Physics, , Zhejiang Cancer Hospital, ; Hangzhou, China
                Article
                14629
                10.1038/s41598-017-14629-w
                5665865
                29093491
                3b862888-a210-449d-b513-f4a53794d196
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 1 June 2017
                : 10 October 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_

                Similar content183

                Cited by8

                Most referenced authors277