13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Heparin-Protein-Wechselwirkungen

      ,
      Angewandte Chemie
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references195

          • Record: found
          • Abstract: found
          • Article: not found

          Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization.

          The crystal structure of a dimeric 2:2:2 FGF:FGFR:heparin ternary complex at 3 A resolution has been determined. Within each 1:1 FGF:FGFR complex, heparin makes numerous contacts with both FGF and FGFR, thereby augmenting FGF-FGFR binding. Heparin also interacts with FGFR in the adjoining 1:1 FGF:FGFR complex to promote FGFR dimerization. The 6-O-sulfate group of heparin plays a pivotal role in mediating both interactions. The unexpected stoichiometry of heparin binding in the structure led us to propose a revised model for FGFR dimerization. Biochemical data in support of this model are also presented. This model provides a structural basis for FGFR activation by small molecule heparin analogs and may facilitate the design of heparin mimetics capable of modulating FGF signaling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1.

            A putative chemokine receptor that we previously cloned and termed LESTR has recently been shown to function as a co-receptor (termed fusin) for lymphocyte-tropic HIV-1 strains. Cells expressing CD4 became permissive to infection with T-cell-line-adapted HIV-1 strains of the syncytium-inducing phenotype after transfection with LESTR/fusin complementary DNA. We report here the indentification of a human chemokine of the CXC type, stromal cell-derived factor 1 (SDF-1), as the natural ligand for LESTR/fusin, and we propose the term CXCR-4 for this receptor, in keeping with the new chemokine-receptor nomenclature. SDF-1 activates Chinese hamster ovary (CHO) cells transfected with CXCR-4 cDNA as well as blood leukocytes and lymphocytes. In cell lines expressing CXCR-4 and CD4, and in blood lymphocytes, SDF-1 is a powerful inhibitor of infection by lymphocyte-tropic HIV-1 strains, whereas the CC chemokines RANTES, MIP-1 alpha and MIP-1 beta, which were shown previously to prevent infection with primary, monocyte-tropic viruses, are inactive. In combination with CC chemokines, which block the infection with monocyte/macrophage-tropic viruses, SDF-1 could help to decrease virus load and prevent the emergence of the syncytium-inducing viruses which are characteristic of the late stages of AIDS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth

              Hepatocyte Growth Factor (HGF, also known as Scatter Factor) is a powerful mitogen or motility factor in different cells, acting through the tyrosine kinase receptor encoded by the MET protooncogene. Endothelial cells express the MET gene and expose at the cell surface the mature protein (p190MET) made of a 50 kD (alpha) subunit disulfide linked to a 145-kD (beta) subunit. HGF binding to endothelial cells identifies two sites with different affinities. The higher affinity binding site (Kd = 0.35 nM) corresponds to the p190MET receptor. Sub- nanomolar concentrations of HGF, but not of a recombinant inactive precursor, stimulate the receptor kinase activity, cell proliferation and motility. HGF induces repairs of a wound in endothelial cell monolayer. HGF stimulates the scatter of endothelial cells grown on three-dimensional collagen gels, inducing an elongated phenotype. In the rabbit cornea, highly purified HGF promotes neovascularization at sub-nanomolar concentrations. HGF lacks activities related to hemostasis-thrombosis, inflammation and endothelial cells accessory functions. These data show that HGF is an in vivo potent angiogenic factor and in vitro induces endothelial cells to proliferate and migrate.
                Bookmark

                Author and article information

                Journal
                Angewandte Chemie
                Angew. Chem.
                Wiley-Blackwell
                0044-8249
                1521-3757
                February 01 2002
                February 01 2002
                : 114
                : 3
                : 426-450
                Article
                10.1002/1521-3757(20020201)114:3<426::AID-ANGE426>3.0.CO;2-Q
                3ba12d7d-490e-41b7-b13a-4f6852d6f2e0
                © 2002

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article