+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Strong Genomic and Phenotypic Heterogeneity in the Aeromonas sobria Species Complex

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Aeromonas sobria is a mesophilic motile aeromonad currently depicted as an opportunistic pathogen, despite increasing evidence of mutualistic interactions in salmonid fish. However, the determinants of its host-microbe associations, either mutualistic or pathogenic, remain less understood than for other aeromonad species. On one side, there is an over-representation of pathogenic interactions in the A. sobria literature, of which only three articles to date report mutualistic interactions; on the other side, genomic characterization of this species is still fairly incomplete as only two draft genomes were published prior to the present work. Consequently, no study specifically investigated the biodiversity of A. sobria. In fact, the investigation of A. sobria as a species complex may have been clouded by: (i) confusion with A. veronii biovar sobria because of their similar biochemical profiles, and (ii) the intrinsic low resolution of previous studies based on 16S rRNA gene sequences and multilocus sequence typing. So far, the only high-resolution, phylogenomic studies of the genus Aeromonas included one A. sobria strain (CECT 4245 / Popoff 208), making it impossible to robustly conclude on the phylogenetic intra-species diversity and the positioning among other Aeromonas species. To further understand the biodiversity and the spectrum of host-microbe interactions in A. sobria as well as its potential genomic diversity, we assessed the genomic and phenotypic heterogeneity among five A. sobria strains: two clinical isolates recovered from infected fish (JF2635 and CECT 4245), one from an infected amphibian (08005) and two recently isolated brook charr probionts (TM12 and TM18) which inhibit in vitro growth of A. salmonicida subsp. salmonicida (a salmonid fish pathogen). A phylogenomic assessment including 2,154 softcore genes corresponding to 946,687 variable sites from 33 Aeromonas genomes confirms the status of A. sobria as a distinct species divided in two subclades, with 100% bootstrap support. The phylogenomic split of A. sobria in two subclades is corroborated by a deep dichotomy between all five A. sobria strains in terms of inhibitory effect against A. salmonicida subsp. salmonicida, gene contents and codon usage. Finally, the antagonistic effect of A. sobria strains TM12 and TM18 suggests novel control methods against A. salmonicida subsp. salmonicida.

          Related collections

          Most cited references 75

          • Record: found
          • Abstract: found
          • Article: not found

          NIH Image to ImageJ: 25 years of image analysis.

          For the past 25 years NIH Image and ImageJ software have been pioneers as open tools for the analysis of scientific images. We discuss the origins, challenges and solutions of these two programs, and how their history can serve to advise and inform other software projects.
            • Record: found
            • Abstract: found
            • Article: not found

            The comprehensive antibiotic resistance database.

            The field of antibiotic drug discovery and the monitoring of new antibiotic resistance elements have yet to fully exploit the power of the genome revolution. Despite the fact that the first genomes sequenced of free living organisms were those of bacteria, there have been few specialized bioinformatic tools developed to mine the growing amount of genomic data associated with pathogens. In particular, there are few tools to study the genetics and genomics of antibiotic resistance and how it impacts bacterial populations, ecology, and the clinic. We have initiated development of such tools in the form of the Comprehensive Antibiotic Research Database (CARD; The CARD integrates disparate molecular and sequence data, provides a unique organizing principle in the form of the Antibiotic Resistance Ontology (ARO), and can quickly identify putative antibiotic resistance genes in new unannotated genome sequences. This unique platform provides an informatic tool that bridges antibiotic resistance concerns in health care, agriculture, and the environment.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations

              We present TranslatorX, a web server designed to align protein-coding nucleotide sequences based on their corresponding amino acid translations. Many comparisons between biological sequences (nucleic acids and proteins) involve the construction of multiple alignments. Alignments represent a statement regarding the homology between individual nucleotides or amino acids within homologous genes. As protein-coding DNA sequences evolve as triplets of nucleotides (codons) and it is known that sequence similarity degrades more rapidly at the DNA than at the amino acid level, alignments are generally more accurate when based on amino acids than on their corresponding nucleotides. TranslatorX novelties include: (i) use of all documented genetic codes and the possibility of assigning different genetic codes for each sequence; (ii) a battery of different multiple alignment programs; (iii) translation of ambiguous codons when possible; (iv) an innovative criterion to clean nucleotide alignments with GBlocks based on protein information; and (v) a rich output, including Jalview-powered graphical visualization of the alignments, codon-based alignments coloured according to the corresponding amino acids, measures of compositional bias and first, second and third codon position specific alignments. The TranslatorX server is freely available at

                Author and article information

                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                08 December 2017
                : 8
                1Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval , Quebec City, QC, Canada
                2Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec , Quebec City, QC, Canada
                3Département de Biochimie, de Microbiologie et de Bio-informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval , Quebec City, QC, Canada
                Author notes

                Edited by: Jesus L. Romalde, Universidade de Santiago de Compostela, Spain

                Reviewed by: M. Carmen Fuste, University of Barcelona, Spain; Brigitte Lamy, Centre Hospitalier Universitaire de Nice, France

                *Correspondence: Jeff Gauthier, jeff.gauthier.1@

                This article was submitted to Evolutionary and Genomic Microbiology, a section of the journal Frontiers in Microbiology

                Copyright © 2017 Gauthier, Vincent, Charette and Derome.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                Page count
                Figures: 5, Tables: 5, Equations: 0, References: 100, Pages: 14, Words: 0
                Original Research


                Comment on this article