14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A comprehensive proteomics profiling identifies NRP1 as a novel identity marker of human bone marrow mesenchymal stromal cell-derived small extracellular vesicles

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Clinical applications have shown extracellular vesicles (EVs) to be a major paracrine effector in therapeutic responses produced by human mesenchymal stromal/stem cells (hMSCs). As the regenerative capacity of EVs is mainly ascribed to the transfer of proteins and RNA composing its cargo, and to the activity attributed by the protein surface markers, we sought to profile the protein composition of small EVs released from hMSCs to identify hMSC-EV biomarkers with potential clinical relevance.

          Methods

          Small EVs were produced and qualified from five human bone marrow MSC donors at low passage following a 48-h culture in exosome-depleted medium further processed by steps of centrifugation, filtration, and precipitation. Quantitative proteomic analysis comparing the protein profile of the EVs released from hMSCs and their parental cell was conducted using tandem mass tag labeling combined to mass spectrometry (LC-MS/MS) to identify enriched EV protein markers.

          Results

          Nanoparticle tracking analysis showed no differences in the EV concentration and size among the five hMSC donors (1.83 × 10 10 ± 3.23 × 10 9/mL), with the mode particle size measuring at 109.3 ± 5.7 nm. Transmission electron microscopy confirmed the presence of nanovesicles with bilayer membranes. Flow cytometric analysis identified commonly found exosomal (CD63/CD81) and hMSC (CD105/CD44/CD146) markers from released EVs in addition to surface mediators of migration (CD29 and MCSP). Quantitative proteomic identified 270 proteins significantly enriched by at least twofold in EVs released from hMSCs as compared to parental hMSCs, where neuropilin 1 (NRP1) was identified among 21 membrane-bound proteins regulating the migration and invasion of cells, as well as chemotaxis and vasculogenesis. Validation by western blot of multiple batches of EVs confirmed consistent enrichment of NRP1 in the nanovesicles released from all five hMSC donors.

          Conclusion

          The identification and verification of NRP1 as a novel enriched surface marker from multiple batches of EVs derived from multiple hMSC donors may serve as a biomarker for the assessment and measurement of EVs for therapeutic uses.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications

          ABSTRACT Small extracellular vesicles (sEVs) from mesenchymal stromal/stem cells (MSCs) are transiting rapidly towards clinical applications. However, discrepancies and controversies about the biology, functions, and potency of MSC-sEVs have arisen due to several factors: the diversity of MSCs and their preparation; various methods of sEV production and separation; a lack of standardized quality assurance assays; and limited reproducibility of in vitro and in vivo functional assays. To address these issues, members of four societies (SOCRATES, ISEV, ISCT and ISBT) propose specific harmonization criteria for MSC-sEVs to facilitate data sharing and comparison, which should help to advance the field towards clinical applications. Specifically, MSC-sEVs should be defined by quantifiable metrics to identify the cellular origin of the sEVs in a preparation, presence of lipid-membrane vesicles, and the degree of physical and biochemical integrity of the vesicles. For practical purposes, new MSC-sEV preparations might also be measured against a well-characterized MSC-sEV biological reference. The ultimate goal of developing these metrics is to map aspects of MSC-sEV biology and therapeutic potency onto quantifiable features of each preparation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease.

            Cardiovascular disease is a major target for many experimental stem cell-based therapies and mesenchymal stem cells (MSCs) are widely used in these therapies. Transplantation of MSCs to treat cardiac disease has always been predicated on the hypothesis that these cells would engraft, differentiate and replace damaged cardiac tissues. However, experimental or clinical observations so far have failed to demonstrate a therapeutically relevant level of transplanted MSC engraftment or differentiation. Instead, they indicate that transplanted MSCs secrete factors to reduce tissue injury and/or enhance tissue repair. Here we review the evidences supporting this hypothesis including the recent identification of exosome as a therapeutic agent in MSC secretion. In particular, we will discuss the potential and practicality of using this relatively novel entity as a therapeutic modality for the treatment of cardiac disease, particularly acute myocardial infarction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Therapeutic applications of extracellular vesicles: clinical promise and open questions.

              This review provides an updated perspective on rapidly proliferating efforts to harness extracellular vesicles (EVs) for therapeutic applications. We summarize current knowledge, emerging strategies, and open questions pertaining to clinical potential and translation. Potentially useful EVs comprise diverse products of various cell types and species. EV components may also be combined with liposomes and nanoparticles to facilitate manufacturing as well as product safety and evaluation. Potential therapeutic cargoes include RNA, proteins, and drugs. Strategic issues considered herein include choice of therapeutic agent, means of loading cargoes into EVs, promotion of EV stability, tissue targeting, and functional delivery of cargo to recipient cells. Some applications may harness natural EV properties, such as immune modulation, regeneration promotion, and pathogen suppression. These properties can be enhanced or customized to enable a wide range of therapeutic applications, including vaccination, improvement of pregnancy outcome, and treatment of autoimmune disease, cancer, and tissue injury.
                Bookmark

                Author and article information

                Contributors
                jessie.lavoie@canada.ca
                Journal
                Stem Cell Res Ther
                Stem Cell Res Ther
                Stem Cell Research & Therapy
                BioMed Central (London )
                1757-6512
                18 December 2019
                18 December 2019
                2019
                : 10
                : 401
                Affiliations
                [1 ]ISNI 0000 0001 2110 2143, GRID grid.57544.37, Centre for Biologics Evaluation, , Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, ; Ottawa, Ontario Canada
                [2 ]ISNI 0000 0001 2182 2255, GRID grid.28046.38, University of Ottawa, ; Ottawa, Ontario Canada
                [3 ]ISNI 0000 0004 1936 893X, GRID grid.34428.39, University of Carleton, ; Ottawa, Ontario Canada
                Author information
                http://orcid.org/0000-0002-5331-368X
                Article
                1516
                10.1186/s13287-019-1516-2
                6921509
                31852509
                3ba1f3c2-b0d6-463e-839a-a6c2b7945f18
                © The Author(s). 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 30 July 2019
                : 5 November 2019
                : 28 November 2019
                Categories
                Research
                Custom metadata
                © The Author(s) 2019

                Molecular medicine
                human bone marrow-derived mesenchymal stromal cells,paracrine effectors,small extracellular vesicles,proteomics,pathway enrichment,identity marker

                Comments

                Comment on this article