81
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Glycan Engagement by Viruses: Receptor Switches and Specificity

      ,
      Annual Review of Virology
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references124

          • Record: found
          • Abstract: found
          • Article: not found

          Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG).

          In April 2008, a nucleotide-sequence-based, complete genome classification system was developed for group A rotaviruses (RVs). This system assigns a specific genotype to each of the 11 genome segments of a particular RV strain according to established nucleotide percent cutoff values. Using this approach, the genome of individual RV strains are given the complete descriptor of Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx. The Rotavirus Classification Working Group (RCWG) was formed by scientists in the field to maintain, evaluate and develop the RV genotype classification system, in particular to aid in the designation of new genotypes. Since its conception, the group has ratified 51 new genotypes: as of April 2011, new genotypes for VP7 (G20-G27), VP4 (P[28]-P[35]), VP6 (I12-I16), VP1 (R5-R9), VP2 (C6-C9), VP3 (M7-M8), NSP1 (A15-A16), NSP2 (N6-N9), NSP3 (T8-T12), NSP4 (E12-E14) and NSP5/6 (H7-H11) have been defined for RV strains recovered from humans, cows, pigs, horses, mice, South American camelids (guanaco), chickens, turkeys, pheasants, bats and a sugar glider. With increasing numbers of complete RV genome sequences becoming available, a standardized RV strain nomenclature system is needed, and the RCWG proposes that individual RV strains are named as follows: RV group/species of origin/country of identification/common name/year of identification/G- and P-type. In collaboration with the National Center for Biotechnology Information (NCBI), the RCWG is also working on developing a RV-specific resource for the deposition of nucleotide sequences. This resource will provide useful information regarding RV strains, including, but not limited to, the individual gene genotypes and epidemiological and clinical information. Together, the proposed nomenclature system and the NCBI RV resource will offer highly useful tools for investigators to search for, retrieve, and analyze the ever-growing volume of RV genomic data.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Junction adhesion molecule is a receptor for reovirus.

            Virus attachment to cells plays an essential role in viral tropism and disease. Reovirus serotypes 1 and 3 differ in the capacity to target distinct cell types in the murine nervous system and in the efficiency to induce apoptosis. The binding of viral attachment protein sigma1 to unidentified receptors controls these phenotypes. We used expression cloning to identify junction adhesion molecule (JAM), an integral tight junction protein, as a reovirus receptor. JAM binds directly to sigma1 and permits reovirus infection of nonpermissive cells. Ligation of JAM is required for reovirus-induced activation of NF-kappaB and apoptosis. Thus, reovirus interaction with cell-surface receptors is a critical determinant of both cell-type specific tropism and virus-induced intracellular signaling events that culminate in cell death.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy.

              The structure of the adeno-associated virus (AAV-2) has been determined to 3-A resolution by x-ray crystallography. AAV is being developed as a vector for gene therapy to treat diseases including hemophilia, cancer, and cystic fibrosis. As in the distantly related autonomous parvoviruses, the capsid protein has a beta-barrel fold, but long loops between the beta-strands share little structural homology with other parvoviruses, leading to unique surface features. Most prominent are groups of threefold-related peaks, each an intimate association of loops from two neighboring subunits. Mutations affecting cell entry and receptor binding are clustered near the positively charged side of each peak, implicating the region in attachment to the cellular receptor, heparan sulfate proteoglycan. Amino acids involved in antibody binding are in the same general vicinity. The structure will guide rational engineering of vector capsids to tailor cellular targeting and to avoid immediate neutralization by an immune system sensitized by prior exposure to AAV.
                Bookmark

                Author and article information

                Journal
                Annual Review of Virology
                Annu. Rev. Virol.
                Annual Reviews
                2327-056X
                2327-0578
                November 03 2014
                November 03 2014
                : 1
                : 1
                : 285-306
                Article
                10.1146/annurev-virology-031413-085417
                26958723
                3ba2bc1c-302f-439f-8bae-5fd3de73e63d
                © 2014
                History

                Comments

                Comment on this article