+1 Recommend
1 collections

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)


      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Combination Therapy of Lung Cancer Using Layer-by-Layer Cisplatin Prodrug and Curcumin Co-Encapsulated Nanomedicine


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Lung cancer remains the leading cancer-associated deaths worldwide. Cisplatin (CDDP) was used in combination with curcumin (CUR) for the treatment of non-small cell lung cancer. The aim of this study was to prepare and characterize CDDP prodrug and CUR co-encapsulated layer-by-layer nanoparticles (CDDP-PLGA/CUR LBL NPs) to induce cooperative response, maximize the therapeutic effect, overcome drug resistance, and reduce adverse side effects.


          CDDP prodrug (CDDP-PLGA) was synthesized. CDDP-PLGA/CUR LBL NPs were constructed and their physicochemical properties were investigated by particle-size analysis, zeta potential measurement, drug loading, drug entrapment efficiency, and in vitro drug release behavior. In vitro cytotoxicity against human lung adenocarcinoma cell line (A549 cells) was investigated, and in vivo anti-tumor efficiency of CDDP-PLGA/CUR LBL NPs was evaluated on mice bearing A549 cell xenografts.


          CDDP-PLGA/CUR LBL NPs have a size of 179.6 ± 6.7 nm, a zeta potential value of −29.9 ± 3.2 mV, high drug entrapment efficiency of 85.6 ± 3.9% (CDDP) and 82.1 ± 2.8% (CUR). The drug release of LBL NPs exhibited a sustained behavior, which made it an ideal vehicle for drug delivery. Furthermore, CDDP-PLGA/CUR LBL NPs could significantly enhance in vitro cytotoxicity and in vivo antitumor effect against A549 cells and lung cancer animal model compared to the single drug-loaded LBL NPs and free drug groups.


          CDDP-PLGA/CUR LBL NPs were reported for the first time in the combination therapy of lung cancer. The results demonstrated that the CDDP-PLGA/CUR LBL NPs might be a novel promising system for the synergetic treatment of lung carcinoma.

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Recent advances of cocktail chemotherapy by combination drug delivery systems.

          Combination chemotherapy is widely exploited for enhanced cancer treatment in the clinic. However, the traditional cocktail administration of combination regimens often suffers from varying pharmacokinetics among different drugs. The emergence of nanotechnology offers an unparalleled opportunity for developing advanced combination drug delivery strategies with the ability to encapsulate various drugs simultaneously and unify the pharmacokinetics of each drug. This review surveys the most recent advances in combination delivery of multiple small molecule chemotherapeutics using nanocarriers. The mechanisms underlying combination chemotherapy, including the synergistic, additive and potentiation effects, are also discussed with typical examples. We further highlight the sequential and site-specific co-delivery strategies, which provide new guidelines for development of programmable combination drug delivery systems. Clinical outlook and challenges are also discussed in the end.
            • Record: found
            • Abstract: found
            • Article: not found

            Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects.

            The success of an effective drug delivery system using liposomes for solid tumor targeting based on EPR effects is highly dependent on both size ranging from 100-200 nm in diameter and prolonged circulation half-life in the blood. A major development was the synthesis of PEG-liposomes with a prolonged circulation time in the blood. Active targeting of immunoliposomes to the solid tumor tissue can be achieved by the Fab' fragment which is better than whole IgG in terms of designing PEG-immunoliposomes with prolonged circulation. For intracellular targeting delivery to solid tumors based on EPR effects, transferrin-PEG-liposomes can stay in blood circulation for a long time and extravasate into the extravascular of tumor tissue by the EPR effect as PEG-liposomes. The extravasated transferrin-PEG-liposomes can maintain anti cancer drugs in interstitial space for a longer period, and deliver them into the cytoplasm of tumor cells via transferrin receptor-mediated endocytosis. Transferrin-PEG-liposomes improve the safety and efficacy of anti cancer drug by both passive targeting by prolonged circulation and active targeting by transferrin. Copyright © 2010 Elsevier B.V. All rights reserved.
              • Record: found
              • Abstract: found
              • Article: not found

              Docetaxel (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer.

              Polydopamine-based surface modification is a simple way to functionalize polymeric nanoparticle (NP) surfaces with ligands and/or additional polymeric layers. In this work, we developed DTX-loaded formulations using polydopamine-modified NPs synthesized using D-α-tocopherol polyethylene glycol 1000 succinate-poly(lactide) (pD-TPGS-PLA/NPs). To target liver cancer cells, galactosamine was conjugated on the prepared NPs (Gal-pD-TPGS-PLA/NPs) to enhance the delivery of DTX via ligand-mediated endocytosis. The size and morphology of pD-TPGS-PLA/NPs and Gal-pD-TPGS-PLA/NPs changed obviously compared with TPGS-PLA/NPs. In vitro studies showed that TPGS-PLA/NPs, pD-TPGS-PLA/NPs and Gal-pD-TPGS-PLA/NPs had similar release profiles of DTX. Both confocal laser scanning microscopy and flow cytometric results showed that coumarin 6-loaded Gal-pD-TPGS-PLA/NPs had the highest cellular uptake efficiency in liver cancer cell line HepG2. Moreover, DTX-loaded Gal-pD-TPGS-PLA/NPs inhibited the growth of HepG2 cells more potently than TPGS-PLA/NPs, pD-TPGS-PLA/NPs, and a clinically available DTX formulation (Taxotere®). The in vivo biodistribution experiments show that the Gal-pD-TPGS-PLA/NPs are specifically targeted to the tumor. Furthermore, the in vivo anti-tumor effects study showed that injecting DTX-loaded Gal-pD-TPGS-PLA/NPs reduced the tumor size most significantly on hepatoma-bearing nude mice. These results suggest that Gal-pD-TPGS-PLA/NPs prepared in the study specifically interacted with the hepatocellular carcinoma cells through ligand-receptor recognition and they may be used as a potentially eligible drug delivery system targeting liver cancers.

                Author and article information

                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                09 June 2020
                : 14
                : 2263-2274
                [1 ]Department of Medical Imaging, The First Affiliated Hospital of Xi’an Jiaotong University , Xi’an, Shaanxi, People’s Republic of China
                [2 ]Department of Oncology Radiotherapy, The First Affiliated Hospital of Xi’an Jiaotong University , Xi’an, Shaanxi, People’s Republic of China
                Author notes
                Correspondence: Hailin Ma Department of Oncology Radiotherapy, The First Affiliated Hospital of Xi’an Jiaotong University , No. 277 Yanta Xi Road, Xi’an, Shaanxi710061, People’s Republic of China Email mahlxjtu@sohu.com
                © 2020 Hong et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                : 06 December 2019
                : 28 April 2020
                Page count
                Figures: 7, Tables: 3, References: 55, Pages: 12
                Original Research

                Pharmacology & Pharmaceutical medicine
                lung cancer,combination therapy,layer-by-layer,cisplatin prodrug,curcumin


                Comment on this article