11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Loss of Smad7 Promotes Inflammation in Rheumatoid Arthritis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective: Smad7 is an inhibitory Smad and plays a protective role in many inflammatory diseases. However, the roles of Smad7 in rheumatoid arthritis (RA) remain unexplored, which were investigated in this study.

          Methods: The activation of TGF-β/Smad signaling was examined in synovial tissues of patients with RA. The functional roles and mechanisms of Smad7 in RA were determined in a mouse model of collagen-induced arthritis (CIA) in Smad7 wild-type (WT) and knockout (KO) CD-1 mice, a strain resistant to autoimmune arthritis induction.

          Results: TGF-β/Smad3 signaling was markedly activated in synovial tissues of patients with RA, which was associated with the loss of Smad7, and enhanced Th17 and Th1 immune response. The potential roles of Smad7 in RA were further investigated in a mouse model of CIA in Smad7 WT/KO CD-1 mice. As expected, Smad7-WT CD-1 mice did not develop CIA. Surprisingly, CD-1 mice with Smad7 deficiency developed severe arthritis including severe joint swelling, synovial hyperplasia, cartilage damage, massive infiltration of CD3 + T cells and F4/80 + macrophages, and upregulation of proinflammatory cytokines IL-1β, TNFα, and MCP-1. Further studies revealed that enhanced arthritis in Smad7 KO CD-1 mice was associated with increased Th1, Th2 and, importantly, Th17 over the Treg immune response with overactive TGF-β/Smad3 and proinflammatory IL-6 signaling in the joint tissues.

          Conclusions: Smad7 deficiency increases the susceptibility to autoimmune arthritis in CD-1 mice. Enhanced TGF-β/Smad3-IL-6 signaling and Th17 immune response may be a mechanism through which disrupted Smad7 causes autoimmune arthritis in CD-1 mice.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis.

          The revised criteria for the classification of rheumatoid arthritis (RA) were formulated from a computerized analysis of 262 contemporary, consecutively studied patients with RA and 262 control subjects with rheumatic diseases other than RA (non-RA). The new criteria are as follows: 1) morning stiffness in and around joints lasting at least 1 hour before maximal improvement; 2) soft tissue swelling (arthritis) of 3 or more joint areas observed by a physician; 3) swelling (arthritis) of the proximal interphalangeal, metacarpophalangeal, or wrist joints; 4) symmetric swelling (arthritis); 5) rheumatoid nodules; 6) the presence of rheumatoid factor; and 7) radiographic erosions and/or periarticular osteopenia in hand and/or wrist joints. Criteria 1 through 4 must have been present for at least 6 weeks. Rheumatoid arthritis is defined by the presence of 4 or more criteria, and no further qualifications (classic, definite, or probable) or list of exclusions are required. In addition, a "classification tree" schema is presented which performs equally as well as the traditional (4 of 7) format. The new criteria demonstrated 91-94% sensitivity and 89% specificity for RA when compared with non-RA rheumatic disease control subjects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma.

            T cell functional differentiation is mediated by lineage-specific transcription factors. T helper 17 (Th17) has been recently identified as a distinct Th lineage mediating tissue inflammation. Retinoic acid receptor-related orphan receptor gamma (ROR gamma) was shown to regulate Th17 differentiation; ROR gamma deficiency, however, did not completely abolish Th17 cytokine expression. Here, we report Th17 cells highly expressed another related nuclear receptor, ROR alpha, induced by transforming growth factor-beta and interleukin-6 (IL-6), which is dependent on signal transducer and activator of transcription 3. Overexpression of ROR alpha promoted Th17 differentiation, possibly through the conserved noncoding sequence 2 in Il17-Il17f locus. ROR alpha deficiency resulted in reduced IL-17 expression in vitro and in vivo. Furthermore, ROR alpha and ROR gamma coexpression synergistically led to greater Th17 differentiation. Double deficiencies in ROR alpha and ROR gamma globally impaired Th17 generation and completely protected mice against experimental autoimmune encephalomyelitis. Therefore, Th17 differentiation is directed by two lineage-specific nuclear receptors, ROR alpha and ROR gamma.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Th17 and regulatory T cell balance in autoimmune and inflammatory diseases.

              This review focuses on the biology of T helper 17 (Th17) and regulatory T (Treg) cells and their role in inflammatory diseases, such as rheumatoid arthritis. Th17 cells represent a pro-inflammatory subset whereas Treg cells have an antagonist effect. Their developmental pathways are reciprocally interconnected and there is an important plasticity between Th17 and Treg cells. These features implicate that the Th17/Treg balance plays a major role in the development and the disease outcomes of animal model and human autoimmune/inflammatory diseases. During these diseases, this balance is disturbed and this promotes the maintenance of inflammation. Targeting the Th17/Treg imbalance can be performed at different levels such as inhibition of pro-inflammatory cytokines and their receptors, of pathogenic cells or their specific signaling pathways. Conversely, direct effects include administration or induction of protective cells, or stimulation of their specific pathways. Several clinical trials are underway and some positive results have been obtained. Copyright © 2014 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                02 November 2018
                2018
                : 9
                : 2537
                Affiliations
                [1] 1Department of Rheumatism and Immunology, Peking University Shenzhen Hospital , Shenzhen, China
                [2] 2Department of Rheumatology and Immunology, Peking University People's Hospital , Peking, China
                [3] 3Department of Medicine and therapeutics, Li KaShing Institute of Health Sciences, The Chinese University of Hong Kong , Shatin, China
                Author notes

                Edited by: Ralf J. Ludwig, Universität zu Lübeck, Germany

                Reviewed by: Xinhua Yu, Forschungszentrum Borstel (LG), Germany; Unni Samavedam, University of Cincinnati, United States

                *Correspondence: Hui-yao Lan hylan@ 123456cuhk.edu.hk

                This article was submitted to Immunological Tolerance and Regulation, a section of the journal Frontiers in Immunology

                †These authors have contributed equally to this work

                Article
                10.3389/fimmu.2018.02537
                6224447
                30450102
                3ba6f20f-e437-4186-aced-a74198c5b53a
                Copyright © 2018 Zhou, Sun, Qin, Lv, Cai, Wang, Mu, Lan and Wang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 August 2018
                : 15 October 2018
                Page count
                Figures: 8, Tables: 0, Equations: 0, References: 52, Pages: 13, Words: 5999
                Funding
                Funded by: Shenzhen Science and Technology Innovation Commission 10.13039/501100010877
                Funded by: Traditional Chinese Medicine Bureau of Guangdong Province 10.13039/501100010883
                Funded by: Research Grants Council, University Grants Committee 10.13039/501100002920
                Categories
                Immunology
                Original Research

                Immunology
                smad7,ra,th17 & tregs cells,tgf-beta 1,inflammation immunomodulation
                Immunology
                smad7, ra, th17 & tregs cells, tgf-beta 1, inflammation immunomodulation

                Comments

                Comment on this article