+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dispersion of single-wall carbon nanotubes with supramolecular Congo red – properties of the complexes and mechanism of the interaction


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          A method of dispersion of single-wall carbon nanotubes (SWNTs) in aqueous media using Congo red (CR) is proposed. Nanotubes covered with CR constitute the high capacity system that provides the possibility of binding and targeted delivery of different drugs, which can intercalate into the supramolecular, ribbon-like CR structure. The study revealed the presence of strong interactions between CR and the surface of SWNTs. The aim of the study was to explain the mechanism of this interaction. The interaction of CR and carbon nanotubes was studied using spectral analysis of the SWNT–CR complex, dynamic light scattering (DLS), differential scanning calorimetry (DSC) and microscopic methods: atomic force microscopy (AFM), transmission (TEM), scanning (SEM) and optical microscopy. The results indicate that the binding of supramolecular CR structures to the surface of the nanotubes is based on the "face to face stacking". CR molecules attached directly to the surface of the nanotubes can bind further, parallel-oriented molecules and form supramolecular and protruding structures. This explains the high CR binding capacity of carbon nanotubes. The presented system – containing SWNTs covered with CR – offers a wide range of biomedical applications.

          Related collections

          Most cited references 35

          • Record: found
          • Abstract: found
          • Article: not found

          Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery.

          We show that large surface areas exist for supramolecular chemistry on single-walled carbon nanotubes (SWNTs) prefunctionalized noncovalently or covalently by common surfactant or acid-oxidation routes. Water-soluble SWNTs with poly(ethylene glycol) (PEG) functionalization via these routes allow for surprisingly high degrees of pi-stacking of aromatic molecules, including a cancer drug (doxorubicin) with ultrahigh loading capacity, a widely used fluorescence molecule (fluorescein), and combinations of molecules. Binding of molecules to nanotubes and their release can be controlled by varying the pH. The strength of pi-stacking of aromatic molecules is dependent on nanotube diameter, leading to a method for controlling the release rate of molecules from SWNTs by using nanotube materials with suitable diameter. This work introduces the concept of "functionalization partitioning" of SWNTs, i.e., imparting multiple chemical species, such as PEG, drugs, and fluorescent tags, with different functionalities onto the surface of the same nanotube. Such chemical partitioning should open up new opportunities in chemical, biological, and medical applications of novel nanomaterials.
            • Record: found
            • Abstract: found
            • Article: not found

            Chemically functionalized carbon nanotubes.

            Since their discovery, carbon nanotubes have attracted the attention of many a scientist around the world. This extraordinary interest stems from their outstanding structural, mechanical, and electronic properties. In fact, apart from being the best and most easily available one-dimensional (1D) model system, carbon nanotubes show strong application potential in electronics, scanning probe microscopy, chemical and biological sensing, reinforced composite materials, and in many more areas. While some of the proposed applications remain still a far-off dream, others are close to technical realization. Recent advances in the development of reliable methods for the chemical functionalization of the nanotubes provide an additional impetus towards extending the scope of their application spectrum. In particular, covalent modification schemes allow persistent alteration of the electronic properties of the tubes, as well as to chemically tailor their surface properties, whereby new functions can be implemented that cannot otherwise be acquired by pristine nanotubes.
              • Record: found
              • Abstract: found
              • Article: not found

              Carbon nanotube applications for tissue engineering.

              As the field of tissue engineering advances, new tools for better monitoring and evaluating of engineered tissues along with new biomaterials to direct tissue growth are needed. Carbon nanotubes may be an important tissue engineering material for improved tracking of cells, sensing of microenvironments, delivering of transfection agents, and scaffolding for incorporating with the host's body. Using carbon nanotubes for optical, magnetic resonance and radiotracer contrast agents would provide better means of evaluating tissue formation. In addition, monitoring and altering intra and intercellular processes would be useful for design of better engineered tissues. Carbon nanotubes can also be incorporated into scaffolds providing structural reinforcement as well as imparting novel properties such as electrical conductivity into the scaffolds may aid in directing cell growth. Potential cytotoxic effects associated with carbon nanotubes may be mitigated by chemically functionalizing the surface. Overall, carbon nanotubes may play an integral role as unique biomaterial for creating and monitoring engineered tissue.

                Author and article information

                Role: Associate Editor
                Beilstein J Nanotechnol
                Beilstein J Nanotechnol
                Beilstein Journal of Nanotechnology
                Beilstein-Institut (Trakehner Str. 7-9, 60487 Frankfurt am Main, Germany )
                16 March 2017
                : 8
                : 636-648
                [1 ]Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7, Kraków 31-034, Poland
                [2 ]Institute of Catalysis and Surface Chemistry, Polish Academy of Science, Niezapominajek 8, Kraków 30-239, Poland
                [3 ]Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
                [4 ]Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
                [5 ]Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, św. Łazarza 16, Kraków 31-034, Poland
                Copyright © 2017, Jagusiak et al.; licensee Beilstein-Institut.

                This is an Open Access article under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: ( http://www.beilstein-journals.org/bjnano)

                Full Research Paper


                Comment on this article