13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Three-dimensional Organization of Polytene Chromosomes in Somatic and Germline Tissues of Malaria Mosquitoes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spatial organization of chromosome territories and interactions between interphase chromosomes themselves, as well as with the nuclear periphery, play important roles in epigenetic regulation of the genome function. However, the interplay between inter-chromosomal contacts and chromosome-nuclear envelope attachments in an organism’s development is not well-understood. To address this question, we conducted microscopic analyses of the three-dimensional chromosome organization in malaria mosquitoes. We employed multi-colored oligonucleotide painting probes, spaced 1 Mb apart along the euchromatin, to quantitatively study chromosome territories in larval salivary gland cells and adult ovarian nurse cells of Anopheles gambiae, An. coluzzii, and An. merus. We found that the X chromosome territory has a significantly smaller volume and is more compact than the autosomal arm territories. The number of inter-chromosomal, and the percentage of the chromosome–nuclear envelope, contacts were conserved among the species within the same cell type. However, the percentage of chromosome regions located at the nuclear periphery was typically higher, while the number of inter-chromosomal contacts was lower, in salivary gland cells than in ovarian nurse cells. The inverse correlation was considerably stronger for the autosomes. Consistent with previous theoretical arguments, our data indicate that, at the genome-wide level, there is an inverse relationship between chromosome-nuclear envelope attachments and chromosome–chromosome interactions, which is a key feature of the cell type-specific nuclear architecture.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction.

          A ribosomal DNA-polymerase chain reaction (PCR) method has been developed for species identification of individuals of the five most widespread members of the Anopheles gambiae complex, a group of morphologically indistinguishable sibling mosquito species that includes the major vectors of malaria in Africa. The method, which is based on species-specific nucleotide sequences in the ribosomal DNA intergenic spacers, may be used to identify both species and interspecies hybrids, regardless of life stage, using either extracted DNA or fragments of a specimen. Intact portions of a mosquito as small as an egg or the segment of one leg may be placed directly into the PCR mixture for amplification and analysis. The method uses a cocktail of five 20-base oligonucleotides to identify An. gambiae, An. arabiensis, An. quadriannnulatus, and either An. melas in western Africa or An. melas in eastern and southern Africa.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The genome sequence of the malaria mosquito Anopheles gambiae.

            Anopheles gambiae is the principal vector of malaria, a disease that afflicts more than 500 million people and causes more than 1 million deaths each year. Tenfold shotgun sequence coverage was obtained from the PEST strain of A. gambiae and assembled into scaffolds that span 278 million base pairs. A total of 91% of the genome was organized in 303 scaffolds; the largest scaffold was 23.1 million base pairs. There was substantial genetic variation within this strain, and the apparent existence of two haplotypes of approximately equal frequency ("dual haplotypes") in a substantial fraction of the genome likely reflects the outbred nature of the PEST strain. The sequence produced a conservative inference of more than 400,000 single-nucleotide polymorphisms that showed a markedly bimodal density distribution. Analysis of the genome sequence revealed strong evidence for about 14,000 protein-encoding transcripts. Prominent expansions in specific families of proteins likely involved in cell adhesion and immunity were noted. An expressed sequence tag analysis of genes regulated by blood feeding provided insights into the physiological adaptations of a hematophagous insect.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome architecture: domain organization of interphase chromosomes.

              The architecture of interphase chromosomes is important for the regulation of gene expression and genome maintenance. Chromosomes are linearly segmented into hundreds of domains with different protein compositions. Furthermore, the spatial organization of chromosomes is nonrandom and is characterized by many local and long-range contacts among genes and other sequence elements. A variety of genome-wide mapping techniques have made it possible to chart these properties at high resolution. Combined with microscopy and computational modeling, the results begin to yield a more coherent picture that integrates linear and three-dimensional (3D) views of chromosome organization in relation to gene regulation and other nuclear functions. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Cells
                Cells
                cells
                Cells
                MDPI
                2073-4409
                01 February 2020
                February 2020
                : 9
                : 2
                : 339
                Affiliations
                [1 ]Department of Entomology, Virginia Tech, Blacksburg, VA 24061, USA; phippl3@ 123456vt.edu (P.G.); jtliang@ 123456vt.edu (J.L.)
                [2 ]Genomics, Bioinformatics and Computational Biology, Virginia Tech, Blacksburg, VA 24061, USA; nak3c@ 123456vt.edu (N.A.K.); alexey@ 123456cs.vt.edu (A.V.O.)
                [3 ]Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
                [4 ]Department of Cytology and Genetics, Tomsk State University, 634050 Tomsk, Russian Federation
                Author notes
                [* ]Correspondence: igor@ 123456vt.edu ; Tel.: +1-540-231-7316
                [†]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0002-8468-7457
                https://orcid.org/0000-0002-4930-6612
                https://orcid.org/0000-0003-0752-3747
                Article
                cells-09-00339
                10.3390/cells9020339
                7072178
                32024176
                3ba8e720-560e-4728-9399-41b0774013e7
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 October 2019
                : 28 January 2020
                Categories
                Article

                anopheles,polytene chromosomes,malaria mosquito,microscopy,nuclear architecture,nuclear envelope,ovarian nurse cells,salivary gland cells,oligonucleotide painting

                Comments

                Comment on this article