9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      In Vivo Formation of 8-Iso-Prostaglandin F 2α and Platelet Activation in Diabetes Mellitus : Effects of Improved Metabolic Control and Vitamin E Supplementation

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diabetes mellitus (DM) is associated with enhanced lipid peroxidation and persistent platelet activation. We tested the hypothesis that the in vivo formation of the F2-isoprostane 8-iso-prostaglandin (PG)F2alpha, a bioactive product of arachidonic acid peroxidation, is enhanced in DM and contributes to platelet activation. Urine samples were obtained from 85 diabetic patients and 85 age- and sex-matched healthy subjects for measurement of immunoreactive 8-iso-PGF2alpha and 11-dehydro-thromboxane B2 (TXM), an in vivo index of platelet activation. Sixty-two had non-insulin-dependent (NID)DM, and 23 had insulin-dependent (ID) DM. Vitamin E supplementation, metabolic control, and cyclooxygenase inhibitors were used to investigate the mechanisms of formation of 8-iso-PGF2alpha in this setting. Urinary 8-iso-PGF2alpha excretion was significantly higher (P=0.0001) in NIDDM patients (419+/-208 pg/mg creatinine; range 160 to 1014) than in age-matched control subjects (208+/-92; 41 to 433). Urinary 8-iso-PGF2alpha was linearly correlated with blood glucose and urinary TXM. 8-iso-PGF2alpha excretion was also significantly (P=0. 0001) higher in IDDM patients (400+/-146; 183 to 702) than in control subjects (197+/-69; 95 to 353). Vitamin E supplementation (600 mg/d for 14 days) was associated with a statistically significant reduction in both urinary 8-iso-PGF2alpha (by 37%) and TXM (by 43%) in 10 NIDDM patients. Improved metabolic control was associated with a significant (P=0.0001) reduction in 8-iso-PGF2alpha and TXM excretion by 32% and 41%, respectively, in 21 NIDDM patients. 8-iso-PGF2alpha was unchanged after 2-week dosing with aspirin and indobufen despite profound suppression of TXM excretion. We conclude that DM is associated with increased formation of F2-isoprostanes, as a correlate of impaired glycemic control and enhanced lipid peroxidation. This may provide an important biochemical link between impaired glycemic control and persistent platelet activation. These results provide a rationale for dose-finding studies of antioxidant treatment in diabetes.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers. Smoking as a cause of oxidative damage.

          It has been hypothesized that the pathogenesis of diseases induced by cigarette smoking involves oxidative damage by free radicals. However, definitive evidence that smoking causes the oxidative modification of target molecules in vivo is lacking. We conducted a study to determine whether the production of F2-isoprostanes, which are novel products of lipid peroxidation, is enhanced in persons who smoke. We measured the levels of free F2-isoprostanes in plasma, the levels of F2-isoprostanes esterified to plasma lipids, and the urinary excretion of metabolites of F2-isoprostanes in 10 smokers and 10 nonsmokers matched for age and sex. The short-term effects of smoking (three cigarettes smoked over 30 minutes) and the effects of two weeks of abstinence from smoking on levels of F2-isoprostanes in the circulation were also determined in the smokers. Plasma levels of free and esterified F2-isoprostanes were significantly higher in the smokers (242 +/- 147 and 574 +/- 217 pmol per liter, respectively) than in the nonsmokers (103 +/- 19 and 345 +/- 65 pmol per liter; P = 0.02 for free F2-isoprostanes and P = 0.03 for esterified F2-isoprostanes). Smoking had no short-term effects on the circulating levels of F2-isoprostanes. However, the levels of free and esterified F2-isoprostanes fell significantly after two weeks of abstinence from smoking (250 +/- 156 and 624 +/- 214 pmol per liter, respectively, before the cessation of smoking, as compared with 156 +/- 67 and 469 +/- 108 pmol per liter after two weeks' cessation; P = 0.03 for free F2-isoprostanes and P = 0.02 for esterified F2-isoprostanes). The increased levels of F2-isoprostanes in the circulation of persons who smoke support the hypothesis that smoking can cause the oxidative modification of important biologic molecules in vivo.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism.

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The role of oxidized lipoproteins in atherogenesis

                Bookmark

                Author and article information

                Journal
                Circulation
                Circulation
                Ovid Technologies (Wolters Kluwer Health)
                0009-7322
                1524-4539
                January 19 1999
                January 19 1999
                : 99
                : 2
                : 224-229
                Affiliations
                [1 ]From the Departments of Medicine and Aging (G.D., A.C., A.M., S.S., E.P., E.V., F. Costantini, F. Capani, C.P.) and Biomedical Sciences (T.B.), University of Chieti “G. D’Annunzio” School of Medicine; the Division of Internal Medicine, Civil Hospital of Popoli (A.F.); and the Department of Pharmacology (G.C.), Catholic University School of Medicine; Rome, Italy.
                Article
                10.1161/01.CIR.99.2.224
                9892587
                3ba9850a-f4ed-4892-9ae3-95d9897e05f1
                © 1999
                History

                Comments

                Comment on this article