36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human IGF1 Regulates Midgut Oxidative Stress and Epithelial Homeostasis to Balance Lifespan and Plasmodium falciparum resistance in Anopheles stephensi

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Insulin and insulin-like growth factor signaling (IIS) regulates cell death, repair, autophagy, and renewal in response to stress, damage, and pathogen challenge. Therefore, IIS is fundamental to lifespan and disease resistance. Previously, we showed that insulin-like growth factor 1 (IGF1) within a physiologically relevant range (0.013–0.13 µM) in human blood reduced development of the human parasite Plasmodium falciparum in the Indian malaria mosquito Anopheles stephensi. Low IGF1 (0.013 µM) induced FOXO and p70S6K activation in the midgut and extended mosquito lifespan, whereas high IGF1 (0.13 µM) did not. In this study the physiological effects of low and high IGF1 were examined in detail to infer mechanisms for their dichotomous effects on mosquito resistance and lifespan. Following ingestion, low IGF1 induced phosphorylation of midgut c-Jun-N-terminal kinase (JNK), a critical regulator of epithelial homeostasis, but high IGF1 did not. Low and high IGF1 induced midgut mitochondrial reactive oxygen species (ROS) synthesis and nitric oxide (NO) synthase gene expression, responses which were necessary and sufficient to mediate IGF1 inhibition of P. falciparum development. However, increased ROS and apoptosis-associated caspase-3 activity returned to baseline levels following low IGF1 treatment, but were sustained with high IGF1 treatment and accompanied by aberrant expression of biomarkers for mitophagy, stem cell division and proliferation. Low IGF1-induced ROS are likely moderated by JNK-induced epithelial cytoprotection as well as p70S6K-mediated growth and inhibition of apoptosis over the lifetime of A. stephensi to facilitate midgut homeostasis and enhanced survivorship. Hence, mitochondrial integrity and homeostasis in the midgut, a key signaling center for IIS, can be targeted to coordinately optimize mosquito fitness and anti-pathogen resistance for improved control strategies for malaria and other vector-borne diseases.

          Author Summary

          The complexity of the malaria parasite life cycle makes it an elusive target for drug and vaccine development. Thus, targeting the parasite in the mosquito vector is an attractive alternative. When consuming an infective blood meal the mosquito ingests not only the blood proteins and parasites, but a range of host blood factors, including the insulin-like growth factor-1 (IGF1) hormone. IGF1 is a highly conserved signaling molecule that regulates a broad spectrum of cellular processes, including immunity and midgut homeostasis. We previously demonstrated that human IGF1 ingested in a blood meal can induce cell signaling in the mosquito midgut that reduces malaria parasite development and extends mosquito lifespan. In this study, we show that midgut signaling by human IGF1 increased the synthesis of reactive oxygen species in midgut mitochondria and enhanced nitric oxide synthase gene expression, responses that inhibit malaria parasite development in the mosquito. Additionally, we found that IGF1 signaling facilitates midgut homeostasis to enhance mosquito survival. These results suggest that IGF1 signaling in the mosquito midgut could be targeted to coordinately enhance mosquito fitness and anti-parasite resistance for improved malaria control strategies.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Evidence that stem cells reside in the adult Drosophila midgut epithelium.

          Adult stem cells maintain organ systems throughout the course of life and facilitate repair after injury or disease. A fundamental property of stem and progenitor cell division is the capacity to retain a proliferative state or generate differentiated daughter cells; however, little is currently known about signals that regulate the balance between these processes. Here, we characterize a proliferating cellular compartment in the adult Drosophila midgut. Using genetic mosaic analysis we demonstrate that differentiated cells in the epithelium arise from a common lineage. Furthermore, we show that reduction of Notch signalling leads to an increase in the number of midgut progenitor cells, whereas activation of the Notch pathway leads to a decrease in proliferation. Thus, the midgut progenitor's default state is proliferation, which is inhibited through the Notch signalling pathway. The ability to identify, manipulate and genetically trace cell lineages in the midgut should lead to the discovery of additional genes that regulate stem and progenitor cell biology in the gastrointestinal tract.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The adult Drosophila posterior midgut is maintained by pluripotent stem cells.

            Vertebrate and invertebrate digestive systems show extensive similarities in their development, cellular makeup and genetic control. The Drosophila midgut is typical: enterocytes make up the majority of the intestinal epithelial monolayer, but are interspersed with hormone-producing enteroendocrine cells. Human (and mouse) intestinal cells are continuously replenished by stem cells, the misregulation of which may underlie some common digestive diseases and cancer. In contrast, stem cells have not been described in the intestines of flies, and Drosophila intestinal cells have been thought to be relatively stable. Here we use lineage labelling to show that adult Drosophila posterior midgut cells are continuously replenished by a distinctive population of intestinal stem cells (ISCs). As in vertebrates, ISCs are multipotent, and Notch signalling is required to produce an appropriate fraction of enteroendocrine cells. Notch is also required for the differentiation of ISC daughter cells, a role that has not been addressed in vertebrates. Unlike previously characterized stem cells, which reside in niches containing a specific partner stromal cell, ISCs adjoin only the basement membrane, differentiated enterocytes and their most recent daughters. The identification of Drosophila intestinal stem cells with striking similarities to their vertebrate counterparts will facilitate the genetic analysis of normal and abnormal intestinal function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut.

              Metazoans employ cytoprotective and regenerative strategies to maintain tissue homeostasis. Understanding the coordination of these strategies is critical to developing accurate models for aging and associated diseases. Here we show that cytoprotective Jun N-terminal kinase (JNK) signaling influences regeneration in the Drosophila gut by directing proliferation of intestinal stem cells (ISCs). Interestingly, this function of JNK contributes to the loss of tissue homeostasis in old and stressed intestines by promoting the accumulation of misdifferentiated ISC daughter cells. Ectopic Delta/Notch signaling in these cells causes their abnormal differentiation but also limits JNK-induced proliferation. Protective JNK signaling and control of cell proliferation and differentiation by Delta/Notch signaling thus have to be carefully balanced to ensure tissue homeostasis. Our findings suggest that this balance is lost in old animals, increasing the potential for neoplastic transformation.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                June 2014
                26 June 2014
                : 10
                : 6
                : e1004231
                Affiliations
                [1 ]Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
                [2 ]Department of Entomology, University of Arizona, Tucson, Arizona, United States of America
                Stanford University, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: ALD SL. Performed the experiments: ALD JEP NP EH BW EKKG MG. Analyzed the data: ALD JEP NP EH BW EKKG MG MAR SL. Wrote the paper: ALD NP MAR SL.

                Article
                PPATHOGENS-D-13-03416
                10.1371/journal.ppat.1004231
                4072789
                24968248
                3bafc3f3-a3da-4668-92d4-a2fd54b4ad44
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 31 December 2014
                : 20 May 2014
                Page count
                Pages: 14
                Funding
                This work was funded by support from the National Institutes of Health (AI073745 to MAR, SL; AI080799 to SL). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Cell Processes
                Cellular Stress Responses
                Molecular Cell Biology
                Signal Transduction
                Immunology
                Immune System
                Innate Immune System
                Immunity
                Microbiology
                Organisms
                Animals
                Invertebrates
                Arthropoda
                Insects
                Mosquitoes
                Protozoans
                Parasitic Protozoans
                Malarial Parasites
                Plasmodium Falciparum
                Medicine and Health Sciences
                Epidemiology
                Disease Vectors
                Vector Biology
                Infectious Diseases
                Parasitic Diseases
                Malaria
                Pathology and Laboratory Medicine
                Pathogenesis
                Host-Pathogen Interactions

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article