45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The renaissance of complement therapeutics

      , , ,  
      Nature Reviews Nephrology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The increasing number of clinical conditions that involve a pathological contribution from the complement system - many of which affect the kidneys - has spurred a regained interest in therapeutic options to modulate this host defence pathway. Molecular insight, technological advances, and the first decade of clinical experience with the complement-specific drug eculizumab, have contributed to a growing confidence in therapeutic complement inhibition. More than 20 candidate drugs that target various stages of the complement cascade are currently being evaluated in clinical trials, and additional agents are in preclinical development. Such diversity is clearly needed in view of the complex and distinct involvement of complement in a wide range of clinical conditions, including rare kidney disorders, transplant rejection and haemodialysis-induced inflammation. The existing drugs cannot be applied to all complement-driven diseases, and each indication has to be assessed individually. Alongside considerations concerning optimal points of intervention and economic factors, patient stratification will become essential to identify the best complement-specific therapy for each individual patient. This Review provides an overview of the therapeutic concepts, targets and candidate drugs, summarizes insights from clinical trials, and reflects on existing challenges for the development of complement therapeutics for kidney diseases and beyond.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: found
          • Article: not found

          Haemolytic uraemic syndrome

          Haemolytic uraemic syndrome is a form of thrombotic microangiopathy affecting predominantly the kidney and characterised by a triad of thrombocytopenia, mechanical haemolytic anaemia, and acute kidney injury. The term encompasses several disorders: shiga toxin-induced and pneumococcus-induced haemolytic uraemic syndrome, haemolytic uraemic syndrome associated with complement dysregulation or mutation of diacylglycerol kinase ɛ, haemolytic uraemic syndrome related to cobalamin C defect, and haemolytic uraemic syndrome secondary to a heterogeneous group of causes (infections, drugs, cancer, and systemic diseases). In the past two decades, experimental, genetic, and clinical studies have helped to decipher the pathophysiology of these various forms of haemolytic uraemic syndrome and undoubtedly improved diagnostic approaches. Moreover, a specific mechanism-based treatment has been made available for patients affected by atypical haemolytic uraemic syndrome due to complement dysregulation. Such treatment is, however, still absent for several other disease types, including shiga toxin-induced haemolytic uraemic syndrome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Randomized Trial of C5a Receptor Inhibitor Avacopan in ANCA-Associated Vasculitis

            Alternative C activation is involved in the pathogenesis of ANCA-associated vasculitis. However, glucocorticoids used as treatment contribute to the morbidity and mortality of vasculitis. We determined whether avacopan (CCX168), an orally administered, selective C5a receptor inhibitor, could replace oral glucocorticoids without compromising efficacy. In this randomized, placebo-controlled trial, adults with newly diagnosed or relapsing vasculitis received placebo plus prednisone starting at 60 mg daily (control group), avacopan (30 mg, twice daily) plus reduced-dose prednisone (20 mg daily), or avacopan (30 mg, twice daily) without prednisone. All patients received cyclophosphamide or rituximab. The primary efficacy measure was the proportion of patients achieving a ≥50% reduction in Birmingham Vasculitis Activity Score by week 12 and no worsening in any body system. We enrolled 67 patients, 23 in the control and 22 in each of the avacopan groups. Clinical response at week 12 was achieved in 14 of 20 (70.0%) control patients, 19 of 22 (86.4%) patients in the avacopan plus reduced-dose prednisone group (difference from control 16.4%; two-sided 90% confidence limit, −4.3% to 37.1%; P =0.002 for noninferiority), and 17 of 21 (81.0%) patients in the avacopan without prednisone group (difference from control 11.0%; two-sided 90% confidence limit, −11.0% to 32.9%; P =0.01 for noninferiority). Adverse events occurred in 21 of 23 (91%) control patients, 19 of 22 (86%) patients in the avacopan plus reduced-dose prednisone group, and 21 of 22 (96%) patients in the avacopan without prednisone group. In conclusion, C5a receptor inhibition with avacopan was effective in replacing high-dose glucocorticoids in treating vasculitis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A journey through the lectin pathway of complement-MBL and beyond.

              Mannose-binding lectin (MBL), collectin-10, collectin-11, and the ficolins (ficolin-1, ficolin-2, and ficolin-3) are soluble pattern recognition molecules in the lectin complement pathway. These proteins act as mediators of host defense and participate in maintenance of tissue homeostasis. They bind to conserved pathogen-specific structures and altered self-antigens and form complexes with the pentraxins to modulate innate immune functions. All molecules exhibit distinct expression in different tissue compartments, but all are found to a varying degree in the circulation. A common feature of these molecules is their ability to interact with a set of serine proteases named MASPs (MASP-1, MASP-2, and MASP-3). MASP-1 and -2 trigger the activation of the lectin pathway and MASP-3 may be involved in the activation of the alternative pathway of complement. Furthermore, MASPs mediate processes related to coagulation, bradykinin release, and endothelial and platelet activation. Variant alleles affecting expression and structure of the proteins have been associated with a variety of infectious and non-infectious diseases, most commonly as disease modifiers. Notably, the severe 3MC (Malpuech, Michels, Mingarelli, and Carnevale) embryonic development syndrome originates from rare mutations affecting either collectin-11 or MASP-3, indicating a broader functionality of the complement system than previously anticipated. This review summarizes the characteristics of the molecules in the lectin pathway.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Nephrology
                Nat Rev Nephrol
                Springer Nature
                1759-5061
                1759-507X
                December 4 2017
                December 4 2017
                :
                :
                Article
                10.1038/nrneph.2017.156
                5805379
                29199277
                3bb26bfd-d6ef-48d4-9a9d-96e70499478a
                © 2017
                History

                Comments

                Comment on this article