12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Case Report: Outcome of Osimertinib Treatment in Lung Adenocarcinoma Patients With Acquired KRAS Mutations

      case-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Osimertinib belongs to the third-generation epidermal growth factor receptor tyrosine kinase inhibitor that has shown positive effects in treating lung adenocarcinoma cancer. However, the subsequent resistance to Osimertinib has become a clinical challenge.

          Case Presentation

          We present two lung adenocarcinoma cases that developed a resistance to Osimertinib. Among them, one patient attained both KRAS exon 2 and exon 3 mutations and was given paclitaxel (albumin-bound) plus carboplatin. The other patient exhibited a KRAS exon 3 mutation, so the paclitaxel (albumin-bound) plus nivolumab was administered. Eventually, the second patient manifested a better clinical outcome than the first.

          Conclusion

          These results provide supporting evidence that KRAS exon 3 (R68S) mutations may be associated with Osimertinib resistance in lung adenocarcinoma patients. This further reveals the relationship between subtypes of acquired KRAS mutations and the effect of therapeutic approaches. Moreover, the combination of chemotherapy and immune checkpoint inhibitors may generate a satisfying disease control.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients

          Circulating tumour DNA (ctDNA) analysis facilitates studies of tumour heterogeneity. Here we employ CAPP-Seq ctDNA analysis to study resistance mechanisms in 43 non-small cell lung cancer (NSCLC) patients treated with the third-generation epidermal growth factor receptor (EGFR) inhibitor rociletinib. We observe multiple resistance mechanisms in 46% of patients after treatment with first-line inhibitors, indicating frequent intra-patient heterogeneity. Rociletinib resistance recurrently involves MET, EGFR, PIK3CA, ERRB2, KRAS and RB1. We describe a novel EGFR L798I mutation and find that EGFR C797S, which arises in ∼33% of patients after osimertinib treatment, occurs in <3% after rociletinib. Increased MET copy number is the most frequent rociletinib resistance mechanism in this cohort and patients with multiple pre-existing mechanisms (T790M and MET) experience inferior responses. Similarly, rociletinib-resistant xenografts develop MET amplification that can be overcome with the MET inhibitor crizotinib. These results underscore the importance of tumour heterogeneity in NSCLC and the utility of ctDNA-based resistance mechanism assessment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Assessment of Resistance Mechanisms and Clinical Implications in Patients With EGFR T790M–Positive Lung Cancer and Acquired Resistance to Osimertinib

            Question What molecular and clinical biomarkers can be used to better understand osimertinib mesylate resistance and develop treatment strategies? Findings In this cohort study of 143 patients who underwent tumor next-generation sequencing, loss of the EGFR T790M mutation was common on resistance to osimertinib and was associated with early treatment failure and development of a range of competing resistance mechanisms, some expected ( MET amplification, small cell transformation) and some novel (acquired KRAS mutations, targetable gene fusions). Early changes in plasma EGFR mutation levels may indicate probable resistance patterns. Meaning Strategies to detect and target multiple coexistent resistance mechanisms will be needed to achieve more durable control of drug resistance in EGFR -mutant lung cancer. Importance Osimertinib mesylate is used globally to treat EGFR -mutant non–small cell lung cancer (NSCLC) with tyrosine kinase inhibitor resistance mediated by the EGFR T790M mutation. Acquired resistance to osimertinib is a growing clinical challenge that is poorly understood. Objective To understand the molecular mechanisms of acquired resistance to osimertinib and their clinical behavior. Design, Setting, and Participants Patients with advanced NSCLC who received osimertinib for T790M-positive acquired resistance to prior EGFR tyrosine kinase inhibitor were identified from a multi-institutional cohort (n = 143) and a confirmatory trial cohort ( NCT01802632 ) (n = 110). Next-generation sequencing of tumor biopsies after osimertinib resistance was performed. Genotyping of plasma cell-free DNA was studied as an orthogonal approach, including serial plasma samples when available. The study and analysis were finalized on November 9, 2017. Main Outcomes and Measures Mechanisms of resistance and their association with time to treatment discontinuation on osimertinib. Results Of the 143 patients evaluated, 41 (28 [68%] women) had tumor next-generation sequencing after acquired resistance to osimertinib. Among 13 patients (32%) with maintained T790M at the time of resistance, EGFR C797S was seen in 9 patients (22%). Among 28 individuals (68%) with loss of T790M, a range of competing resistance mechanisms was detected, including novel mechanisms such as acquired KRAS mutations and targetable gene fusions. Time to treatment discontinuation was shorter in patients with T790M loss (6.1 vs 15.2 months), suggesting emergence of pre-existing resistant clones; this finding was confirmed in a validation cohort of 110 patients with plasma cell-free DNA genotyping performed after osimertinib resistance. In studies of serial plasma levels of mutant EGFR , loss of T790M at resistance was associated with a smaller decrease in levels of the EGFR driver mutation after 1 to 3 weeks of therapy (100% vs 83% decrease; P  = .01). Conclusions and Relevance Acquired resistance to osimertinib mediated by loss of the T790M mutation is associated with early resistance and a range of competing resistance mechanisms. These data provide clinical evidence of the heterogeneity of resistance in advanced NSCLC and a need for clinical trial strategies that can overcome multiple concomitant resistance mechanisms or strategies for preventing such resistance. This cohort study examines mechanisms of acquired resistance to osimertinib in patients with non–small cell lung cancer and the associated clinical implications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer.

              Somatic mutations of the k-RAS oncogene have been assessed as a mechanism of de-novo resistance to epidermal growth factor receptor (EGFR) tyrosine-kinase inhibition in patients with non-small-cell lung cancer (NSCLC), and to anti-EGFR monoclonal antibodies in patients with metastatic colorectal cancer (mCRC). The aim of this systematic review and meta-analysis was to assess if k-RAS mutations represent a candidate predictive biomarker for anti-EGFR-targeted therapeutic strategies in mCRC and NSCLC. We systematically identified articles pertaining to k-RAS mutational status in patients with NSCLC treated with tyrosine-kinase inhibitors (TKI), and patients with mCRC treated with any anti-EGFR-based regimens. Eligible studies had to report complete responses (CR) and partial responses (PR), stratified by k-RAS mutational status. Potential between-study heterogeneity was accommodated by use of random-effects models for bivariable meta-analysis of sensitivity and specificity (the primary endpoints). The positive and negative likelihood ratios (+LR and -LR, respectively) of k-RAS mutations for predicting an absence of response were considered as secondary endpoints and were calculated by use of pooled estimates for sensitivity and specificity. Of 252 retrieved manuscripts, 17 were deemed eligible for the NSCLC meta-analysis (165 of 1008 patients with mutated k-RAS). The presence of k-RAS mutations was significantly associated with an absence of response to TKIs (sensitivity=0.21 [95% CI 0.16-0.28], specificity=0.94 [0.89-0.97]; +LR=3.52; -LR=0.84). Of 68 retrieved manuscripts reporting on anti-EGFR monoclonal-antibody-based treatment of mCRC, eight studies were deemed eligible for the final analysis (306 of 817 patients with mutated k-RAS). The presence of k-RAS mutations was significantly associated with an absence of response to anti-EGFR monoclonal-antibody-based treatments (sensitivity=0.47 [0.43-0.52]; specificity=0.93 [0.83-0.97]; +LR=6.82; -LR=0.57). This analysis provides empirical evidence that k-RAS mutations are highly specific negative predictors of response (de-novo resistance) to single-agent EGFR TKIs in advanced NSCLC; and similarly to anti-EGFR monoclonal antibodies alone or in combination with chemotherapy in patients with mCRC. The low sensitivity and relatively high -LR of k-RAS mutations for determining non-responsiveness clearly shows that additional mechanisms of resistance to EGFR inhibitors exist.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                22 April 2021
                2021
                : 11
                : 630256
                Affiliations
                [1] Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University , Chengdu, China
                Author notes

                Edited by: Nathalie Labarriere, Institut National de la Santé et de la Recherche Médicale (INSERM), France

                Reviewed by: Timothy F. Burns, University of Pittsburgh, United States; József Tímár, Semmelweis University, Hungary

                *Correspondence: Meijuan Huang, hmj107@ 123456163.com

                This article was submitted to Cancer Immunity and Immunotherapy, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2021.630256
                8100222
                3bb7d591-0cdf-4181-b359-6900de02868f
                Copyright © 2021 Xiu, Zhang, Yu, Huang and Huang

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 17 November 2020
                : 30 March 2021
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 25, Pages: 5, Words: 1724
                Categories
                Oncology
                Case Report

                Oncology & Radiotherapy
                non–small cell lung cancer,acquired kras mutation,osimertinib,immune checkpoint inhibitor,drug-resistance

                Comments

                Comment on this article