39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Organoids-on-a-chip

      , ,
      Science
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent studies have demonstrated an array of stem cell–derived, self-organizing miniature organs, termed organoids, that replicate the key structural and functional characteristics of their in vivo counterparts. As organoid technology opens up new frontiers of research in biomedicine, there is an emerging need for innovative engineering approaches for the production, control, and analysis of organoids and their microenvironment. In this Review, we explore organ-on-a-chip technology as a platform to fulfill this need and examine how this technology may be leveraged to address major technical challenges in organoid research. We also discuss emerging opportunities and future obstacles for the development and application of organoid-on-a-chip technology.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Three-dimensional bioprinting of thick vascularized tissues.

          The advancement of tissue and, ultimately, organ engineering requires the ability to pattern human tissues composed of cells, extracellular matrix, and vasculature with controlled microenvironments that can be sustained over prolonged time periods. To date, bioprinting methods have yielded thin tissues that only survive for short durations. To improve their physiological relevance, we report a method for bioprinting 3D cell-laden, vascularized tissues that exceed 1 cm in thickness and can be perfused on chip for long time periods (>6 wk). Specifically, we integrate parenchyma, stroma, and endothelium into a single thick tissue by coprinting multiple inks composed of human mesenchymal stem cells (hMSCs) and human neonatal dermal fibroblasts (hNDFs) within a customized extracellular matrix alongside embedded vasculature, which is subsequently lined with human umbilical vein endothelial cells (HUVECs). These thick vascularized tissues are actively perfused with growth factors to differentiate hMSCs toward an osteogenic lineage in situ. This longitudinal study of emergent biological phenomena in complex microenvironments represents a foundational step in human tissue generation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanical forces direct stem cell behaviour in development and regeneration

            Stem cells and their local microenvironment, or niche, communicate through mechanical cues to regulate cell fate and cell behaviour and to guide developmental processes. During embryonic development, mechanical forces are involved in patterning and organogenesis. The physical environment of pluripotent stem cells regulates their self-renewal and differentiation. Mechanical and physical cues are also important in adult tissues, where adult stem cells require physical interactions with the extracellular matrix to maintain their potency. In vitro, synthetic models of the stem cell niche can be used to precisely control and manipulate the biophysical and biochemical properties of the stem cell microenvironment and to examine how the mode and magnitude of mechanical cues, such as matrix stiffness or applied forces, direct stem cell differentiation and function. Fundamental insights into the mechanobiology of stem cells also inform the design of artificial niches to support stem cells for regenerative therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Soft lithography in biology and biochemistry.

              Soft lithography, a set of techniques for microfabrication, is based on printing and molding using elastomeric stamps with the patterns of interest in basrelief. As a technique for fabricating microstructures for biological applications, soft lithography overcomes many of the shortcomings of photolithography. In particular, soft lithography offers the ability to control the molecular structure of surfaces and to pattern the complex molecules relevant to biology, to fabricate channel structures appropriate for microfluidics, and to pattern and manipulate cells. For the relatively large feature sizes used in biology (> or = 50 microns), production of prototype patterns and structures is convenient, inexpensive, and rapid. Self-assembled monolayers of alkanethiolates on gold are particularly easy to pattern by soft lithography, and they provide exquisite control over surface biochemistry.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                June 06 2019
                June 07 2019
                June 06 2019
                June 07 2019
                : 364
                : 6444
                : 960-965
                Article
                10.1126/science.aaw7894
                7764943
                31171693
                3bc9600b-db7b-43b9-8aa8-ada2019bb867
                © 2019

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article