Blog
About

41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Domains of genome-wide gene expression dysregulation in Down's syndrome.

      Nature

      Twins, Monozygotic, genetics, Transcriptome, Mice, Methylation, Male, metabolism, Lysine, Induced Pluripotent Stem Cells, Humans, chemistry, Histones, Genome, Gene Expression Regulation, Fibroblasts, cytology, Fetus, Female, pathology, Down Syndrome, DNA Replication Timing, Chromosomes, Mammalian, Chromosomes, Human, Pair 21, Chromatin, Cells, Cultured, Animals

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Trisomy 21 is the most frequent genetic cause of cognitive impairment. To assess the perturbations of gene expression in trisomy 21, and to eliminate the noise of genomic variability, we studied the transcriptome of fetal fibroblasts from a pair of monozygotic twins discordant for trisomy 21. Here we show that the differential expression between the twins is organized in domains along all chromosomes that are either upregulated or downregulated. These gene expression dysregulation domains (GEDDs) can be defined by the expression level of their gene content, and are well conserved in induced pluripotent stem cells derived from the twins' fibroblasts. Comparison of the transcriptome of the Ts65Dn mouse model of Down's syndrome and normal littermate mouse fibroblasts also showed GEDDs along the mouse chromosomes that were syntenic in human. The GEDDs correlate with the lamina-associated (LADs) and replication domains of mammalian cells. The overall position of LADs was not altered in trisomic cells; however, the H3K4me3 profile of the trisomic fibroblasts was modified and accurately followed the GEDD pattern. These results indicate that the nuclear compartments of trisomic cells undergo modifications of the chromatin environment influencing the overall transcriptome, and that GEDDs may therefore contribute to some trisomy 21 phenotypes.

          Related collections

          Author and article information

          Journal
          24740065
          10.1038/nature13200

          Comments

          Comment on this article