62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Migraine photophobia originating in cone-driven retinal pathways

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Migraine headache is uniquely exacerbated by light. Using psychophysical assessments in patients with normal eyesight we found that green light exacerbates migraine headache significantly less than white, blue, amber or red lights. To delineate mechanisms, we used electroretinography and visual evoked potential recording in patients, and multi-unit recording of dura- and light-sensitive thalamic neurons in rats to show that green activates cone-driven retinal pathways to a lesser extent than white, blue and red; that thalamic neurons are most responsive to blue and least responsive to green; and that cortical responses to green are significantly smaller than those generated by blue, amber and red lights. These findings suggest that patients' experience with colour and migraine photophobia could originate in cone-driven retinal pathways, fine-tuned in relay thalamic neurons outside the main visual pathway, and preserved by the cortex. Additionally, the findings provide substrate for the soothing effects of green light.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering.

          This study introduces a new method for detecting and sorting spikes from multiunit recordings. The method combines the wavelet transform, which localizes distinctive spike features, with superparamagnetic clustering, which allows automatic classification of the data without assumptions such as low variance or gaussian distributions. Moreover, an improved method for setting amplitude thresholds for spike detection is proposed. We describe several criteria for implementation that render the algorithm unsupervised and fast. The algorithm is compared to other conventional methods using several simulated data sets whose characteristics closely resemble those of in vivo recordings. For these data sets, we found that the proposed algorithm outperformed conventional methods.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Electrophysiological correlates of feature analysis during visual search.

            Event-related brain potentials (ERPs) were recorded from normal young adults during visual search tasks in which the stimulus arrays contained either eight identical items (homogeneous arrays) or seven identical items and one deviant item (pop-out arrays). Four experiments were conducted in which different classes of stimulus arrays were designated targets and the remaining stimulus arrays were designated nontargets. In Experiments 1 and 2, both target and nontarget pop-out stimuli elicited an enhanced anterior N2 wave and a contralaterally larger posterior P1 wave, but Experiments 3 and 4 demonstrated that these components do not reflect fully automatic pop-out detection processes. In all four experiments, target pop-outs elicited enlarged anterior P2, posterior N2, occipital P3, and parietal P3 waves. The target-elicited posterior N2 wave contained a contralateral subcomponent (N2pc) that exhibited a focus over occipital cortex in maps of current source density. The overall pattern of results was consistent with guided search models in which preattentive stimulus information is used to guide attention to task-relevant stimuli.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice.

              In the mammalian retina, besides the conventional rod-cone system, a melanopsin-associated photoreceptive system exists that conveys photic information for accessory visual functions such as pupillary light reflex and circadian photo-entrainment. On ablation of the melanopsin gene, retinal ganglion cells that normally express melanopsin are no longer intrinsically photosensitive. Furthermore, pupil reflex, light-induced phase delays of the circadian clock and period lengthening of the circadian rhythm in constant light are all partially impaired. Here, we investigated whether additional photoreceptive systems participate in these responses. Using mice lacking rods and cones, we measured the action spectrum for phase-shifting the circadian rhythm of locomotor behaviour. This spectrum matches that for the pupillary light reflex in mice of the same genotype, and that for the intrinsic photosensitivity of the melanopsin-expressing retinal ganglion cells. We have also generated mice lacking melanopsin coupled with disabled rod and cone phototransduction mechanisms. These animals have an intact retina but fail to show any significant pupil reflex, to entrain to light/dark cycles, and to show any masking response to light. Thus, the rod-cone and melanopsin systems together seem to provide all of the photic input for these accessory visual functions.
                Bookmark

                Author and article information

                Journal
                Brain
                Brain
                Oxford University Press (OUP)
                0006-8950
                1460-2156
                June 24 2016
                July 2016
                July 2016
                May 17 2016
                : 139
                : 7
                : 1971-1986
                Article
                10.1093/brain/aww119
                4939697
                27190022
                3be4df79-7ec2-4197-bc71-cf504ba4ad05
                © 2016
                History

                Comments

                Comment on this article