0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Drug Research Meets Network Science: Where Are We?

      review-article
      ,
      Journal of Medicinal Chemistry
      American Chemical Society

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Network theory provides one of the most potent analysis tools for the study of complex systems. In this paper, we illustrate the network-based perspective in drug research and how it is coherent with the new paradigm of drug discovery. We first present data sources from which networks are built, then show some examples of how the networks can be used to investigate drug-related systems. A section is devoted to network-based inference applications, i.e., prediction methods based on interactomes, that can be used to identify putative drug–target interactions without resorting to 3D modeling. Finally, we present some aspects of Boolean networks dynamics, anticipating that it might become a very potent modeling framework to develop in silico screening protocols able to simulate phenotypic screening experiments. We conclude that network applications integrated with machine learning and 3D modeling methods will become an indispensable tool for computational drug discovery in the next years.

          Related collections

          Most cited references114

          • Record: found
          • Abstract: found
          • Article: not found

          Cytoscape: a software environment for integrated models of biomolecular interaction networks.

          Cytoscape is an open source software project for integrating biomolecular interaction networks with high-throughput expression data and other molecular states into a unified conceptual framework. Although applicable to any system of molecular components and interactions, Cytoscape is most powerful when used in conjunction with large databases of protein-protein, protein-DNA, and genetic interactions that are increasingly available for humans and model organisms. Cytoscape's software Core provides basic functionality to layout and query the network; to visually integrate the network with expression profiles, phenotypes, and other molecular states; and to link the network to databases of functional annotations. The Core is extensible through a straightforward plug-in architecture, allowing rapid development of additional computational analyses and features. Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic gene regulatory models.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets

            Abstract Proteins and their functional interactions form the backbone of the cellular machinery. Their connectivity network needs to be considered for the full understanding of biological phenomena, but the available information on protein–protein associations is incomplete and exhibits varying levels of annotation granularity and reliability. The STRING database aims to collect, score and integrate all publicly available sources of protein–protein interaction information, and to complement these with computational predictions. Its goal is to achieve a comprehensive and objective global network, including direct (physical) as well as indirect (functional) interactions. The latest version of STRING (11.0) more than doubles the number of organisms it covers, to 5090. The most important new feature is an option to upload entire, genome-wide datasets as input, allowing users to visualize subsets as interaction networks and to perform gene-set enrichment analysis on the entire input. For the enrichment analysis, STRING implements well-known classification systems such as Gene Ontology and KEGG, but also offers additional, new classification systems based on high-throughput text-mining as well as on a hierarchical clustering of the association network itself. The STRING resource is available online at https://string-db.org/.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              UniProt: a worldwide hub of protein knowledge

              (2018)
              Abstract The UniProt Knowledgebase is a collection of sequences and annotations for over 120 million proteins across all branches of life. Detailed annotations extracted from the literature by expert curators have been collected for over half a million of these proteins. These annotations are supplemented by annotations provided by rule based automated systems, and those imported from other resources. In this article we describe significant updates that we have made over the last 2 years to the resource. We have greatly expanded the number of Reference Proteomes that we provide and in particular we have focussed on improving the number of viral Reference Proteomes. The UniProt website has been augmented with new data visualizations for the subcellular localization of proteins as well as their structure and interactions. UniProt resources are available under a CC-BY (4.0) license via the web at https://www.uniprot.org/.
                Bookmark

                Author and article information

                Journal
                J Med Chem
                J Med Chem
                jm
                jmcmar
                Journal of Medicinal Chemistry
                American Chemical Society
                0022-2623
                1520-4804
                27 April 2020
                27 August 2020
                : 63
                : 16 , Artificial Intelligence in Drug Discovery
                : 8653-8666
                Affiliations
                [1]Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna , Via Belmeloro 6, I-40126 Bologna, Italy
                Author notes
                Article
                10.1021/acs.jmedchem.9b01989
                8007104
                32338900
                3be90fcb-86bb-4a8e-8261-5daabbac4b2e

                Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 29 November 2019
                Categories
                Perspective
                Custom metadata
                jm9b01989
                jm9b01989

                Pharmaceutical chemistry
                Pharmaceutical chemistry

                Comments

                Comment on this article