1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Adopting Clean Fuels and Technologies on School Buses. Pollution and Health Impacts in Children

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          More than 25 million American children breathe polluted air on diesel school buses. Emission reduction policies exist, but the health impacts to individual children have not been evaluated.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Traffic, Susceptibility, and Childhood Asthma

          Results from studies of traffic and childhood asthma have been inconsistent, but there has been little systematic evaluation of susceptible subgroups. In this study, we examined the relationship of local traffic-related exposure and asthma and wheeze in southern California school children (5–7 years of age). Lifetime history of doctor-diagnosed asthma and prevalent asthma and wheeze were evaluated by questionnaire. Parental history of asthma and child’s history of allergic symptoms, sex, and early-life exposure (residence at the same home since 2 years of age) were examined as susceptibility factors. Residential exposure was assessed by proximity to a major road and by modeling exposure to local traffic-related pollutants. Residence within 75 m of a major road was associated with an increased risk of lifetime asthma [odds ratio (OR) = 1.29; 95% confidence interval (CI), 1.01–1.86], prevalent asthma (OR = 1.50; 95% CI, 1.16–1.95), and wheeze (OR = 1.40; 95% CI, 1.09–1.78). Susceptibility increased in long-term residents with no parental history of asthma for lifetime asthma (OR = 1.85; 95% CI, 1.11–3.09), prevalent asthma (OR = 2.46; 95% CI, 0.48–4.09), and recent wheeze (OR = 2.74; 95% CI, 1.71–4.39). The higher risk of asthma near a major road decreased to background rates at 150–200 m from the road. In children with a parental history of asthma and in children moving to the residence after 2 years of age, there was no increased risk associated with exposure. Effect of residential proximity to roadways was also larger in girls. A similar pattern of effects was observed with traffic-modeled exposure. These results indicate that residence near a major road is associated with asthma. The reason for larger effects in those with no parental history of asthma merits further investigation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Air pollution and development of asthma, allergy and infections in a birth cohort.

            Few studies have addressed associations between traffic-related air pollution and respiratory disease in young children. The present authors assessed the development of asthmatic/allergic symptoms and respiratory infections during the first 4 yrs of life in a birth cohort study (n = approximately 4,000). Outdoor concentrations of traffic-related air pollutants (nitrogen dioxide PM(2.5), particles with a 50% cut-off aerodynamic diameter of 2.5 mum and soot) were assigned to birthplace home addresses with a land-use regression model. They were linked by logistic regression to questionnaire data on doctor-diagnosed asthma, bronchitis, influenza and eczema and to self-reported wheeze, dry night-time cough, ear/nose/throat infections and skin rash. Total and specific immunoglobulin (Ig)E to common allergens were measured in a subgroup (n = 713). Adjusted odds ratios (95% confidence intervals) per interquartile pollution range were elevated for wheeze (1.2 (1.0-1.4) for soot), doctor-diagnosed asthma (1.3 (1.0-1.7)), ear/nose/throat infections (1.2 (1.0-1.3)) and flu/serious colds (1.2 (1.0-1.4)). No consistent associations were observed for other end-points. Positive associations between air pollution and specific sensitisation to common food allergens (1.6 (1.2-2.2) for soot), but not total IgE, were found in the subgroup with IgE measurements. Traffic-related pollution was associated with respiratory infections and some measures of asthma and allergy during the first 4 yrs of life.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Short-Term Effects of PM10 and NO2 on Respiratory Health among Children with Asthma or Asthma-like Symptoms: A Systematic Review and Meta-Analysis

              Objective Our goal was to quantify the short-term effects of particulate matter with aerodynamic diameter ≤ 10 μm (PM10) and nitrogen dioxide (NO2) on respiratory health of asthmatic children from published panel studies, and to investigate the influence of study and population characteristics as effect modifiers. Data extraction After a systematic literature review, we extracted quantitative estimates of the association of PM10 and/or NO2 with respiratory symptoms and peak expiratory flow (PEF). Combined effect estimates for an increase of 10 μg/m3 were calculated by random effects meta-analysis for all studies and for different strata defined by study characteristics. The effect of publication bias was investigated with Egger’s and Begg’s tests and “trim-and-fill” analyses. Data synthesis We identified 36 studies; 14 were part of the European Pollution Effects on Asthmatic Children in Europe (PEACE) study. Adverse associations of PM10 with asthma symptoms were statistically significant [odds ratio (OR) = 1.028; 95% confidence interval (CI), 1.006–1.051]. There were also associations, although not statistically significant, of PM10 with cough (OR = 1.012; 95% CI, 0.997–1.026) and on PEF (decrease of −0.082 L/min; 95% CI, −0.214 to 0.050). NO2 had statistically significant associations with asthma symptoms in the overall analysis considering all possible lags (OR = 1.031; 95% CI, 1.001–1.062), but not when we evaluated only the 0–1 lag. We found no publication bias, although it appeared when excluding the PEACE studies. When we applied the trim-and-fill method to the data set without the PEACE studies, the results were similar to the overall estimates from all studies. There was an indication for stronger PM10 associations for studies conducted in summer, outside of Europe, with longer lags, and in locations with higher NO2 concentrations. Conclusions We found clear evidence of effects of PM10 on the occurrence of asthma symptom episodes, and to a lesser extent on cough and PEF. The results for NO2 are more difficult to interpret because they depend on the lag times examined. There was an indication of effect modification by several study conditions.
                Bookmark

                Author and article information

                Journal
                American Journal of Respiratory and Critical Care Medicine
                Am J Respir Crit Care Med
                American Thoracic Society
                1073-449X
                1535-4970
                June 15 2015
                June 15 2015
                : 191
                : 12
                : 1413-1421
                Article
                10.1164/rccm.201410-1924OC
                4476560
                25867003
                3c06b832-6037-4fb7-8976-ed7c60981f81
                © 2015
                History

                Comments

                Comment on this article