16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome recoding by tRNA modifications

      review-article
      ,
      Open Biology
      The Royal Society
      tRNA modification, tRNA anticodon, protein translation, genome recoding

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RNA modifications are emerging as an additional regulatory layer on top of the primary RNA sequence. These modifications are particularly enriched in tRNAs where they can regulate not only global protein translation, but also protein translation at the codon level. Modifications located in or in the vicinity of tRNA anticodons are highly conserved in eukaryotes and have been identified as potential regulators of mRNA decoding. Recent studies have provided novel insights into how these modifications orchestrate the speed and fidelity of translation to ensure proper protein homeostasis. This review highlights the prominent modifications in the tRNA anticodon loop: queuosine, inosine, 5-methoxycarbonylmethyl-2-thiouridine, wybutosine, threonyl–carbamoyl–adenosine and 5-methylcytosine. We discuss the functional relevance of these modifications in protein translation and their emerging role in eukaryotic genome recoding during cellular adaptation and disease.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          GtRNAdb: a database of transfer RNA genes detected in genomic sequence

          Transfer RNAs (tRNAs) represent the single largest, best-understood class of non-protein coding RNA genes found in all living organisms. By far, the major source of new tRNAs is computational identification of genes within newly sequenced genomes. To organize the rapidly growing collection and enable systematic analyses, we created the Genomic tRNA Database (GtRNAdb), currently including over 74 000 tRNA genes predicted from 740 species. The web resource provides overview statistics of tRNA genes within each analyzed genome, including information by isotype and genetic locus, easily downloadable primary sequences, graphical secondary structures and multiple sequence alignments. Direct links for each gene to UCSC eukaryotic and microbial genome browsers provide graphical display of tRNA genes in the context of all other local genetic information. The database can be searched by primary sequence similarity, tRNA characteristics or phylogenetic group. The database is publicly available at http://gtrnadb.ucsc.edu.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage.

            Dnmt2 proteins are the most conserved members of the DNA methyltransferase enzyme family, but their substrate specificity and biological functions have been a subject of controversy. We show here that, in addition to tRNA(Asp-GTC), tRNA(Val-AAC) and tRNA(Gly-GCC) are also methylated by Dnmt2. Drosophila Dnmt2 mutants showed reduced viability under stress conditions, and Dnmt2 relocalized to stress granules following heat shock. Strikingly, stress-induced cleavage of tRNAs was Dnmt2-dependent, and Dnmt2-mediated methylation protected tRNAs against ribonuclease cleavage. These results uncover a novel biological function of Dnmt2-mediated tRNA methylation, and suggest a role for Dnmt2 enzymes during the biogenesis of tRNA-derived small RNAs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis.

              The function of cytosine-C5 methylation, a widespread modification of tRNAs, has remained obscure, particularly in mammals. We have now developed a mouse strain defective in cytosine-C5 tRNA methylation, by disrupting both the Dnmt2 and the NSun2 tRNA methyltransferases. Although the lack of either enzyme alone has no detectable effects on mouse viability, double mutants showed a synthetic lethal interaction, with an underdeveloped phenotype and impaired cellular differentiation. tRNA methylation analysis of the double-knockout mice demonstrated complementary target-site specificities for Dnmt2 and NSun2 and a complete loss of cytosine-C5 tRNA methylation. Steady-state levels of unmethylated tRNAs were substantially reduced, and loss of Dnmt2 and NSun2 was further associated with reduced rates of overall protein synthesis. These results establish a biologically important function for cytosine-C5 tRNA methylation in mammals and suggest that this modification promotes mouse development by supporting protein synthesis.
                Bookmark

                Author and article information

                Journal
                Open Biol
                Open Biol
                RSOB
                royopenbio
                Open Biology
                The Royal Society
                2046-2441
                December 2016
                14 December 2016
                14 December 2016
                : 6
                : 12
                : 160287
                Affiliations
                Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center , Heidelberg, Germany
                Author notes
                Author information
                http://orcid.org/0000-0002-4873-5431
                Article
                rsob160287
                10.1098/rsob.160287
                5204126
                27974624
                3c414028-21d5-4209-82f1-82e1367c1dd1
                © 2016 The Authors.

                Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.

                History
                : 14 October 2016
                : 14 November 2016
                Funding
                Funded by: Deutsche Forschungsgemeinschaft, http://dx.doi.org/10.13039/501100001659;
                Award ID: SPP1784
                Funded by: Baden-Württemberg Stiftung, http://dx.doi.org/10.13039/100008316;
                Award ID: nc_019
                Funded by: NCT3.0 program;
                Categories
                1001
                33
                129
                Review
                Invited Review
                Custom metadata
                December 2016

                Life sciences
                trna modification,trna anticodon,protein translation,genome recoding
                Life sciences
                trna modification, trna anticodon, protein translation, genome recoding

                Comments

                Comment on this article