124
views
0
recommends
+1 Recommend
0 collections
    12
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Mixture of Delta-Rules Approximation to Bayesian Inference in Change-Point Problems

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Error-driven learning rules have received considerable attention because of their close relationships to both optimal theory and neurobiological mechanisms. However, basic forms of these rules are effective under only a restricted set of conditions in which the environment is stable. Recent studies have defined optimal solutions to learning problems in more general, potentially unstable, environments, but the relevance of these complex mathematical solutions to how the brain solves these problems remains unclear. Here, we show that one such Bayesian solution can be approximated by a computationally straightforward mixture of simple error-driven ‘Delta’ rules. This simpler model can make effective inferences in a dynamic environment and matches human performance on a predictive-inference task using a mixture of a small number of Delta rules. This model represents an important conceptual advance in our understanding of how the brain can use relatively simple computations to make nearly optimal inferences in a dynamic world.

          Author Summary

          The ability to make accurate predictions is important to thrive in a dynamic world. Many predictions, like those made by a stock picker, are based, at least in part, on historical data thought also to reflect future trends. However, when unexpected changes occur, like an abrupt change in the value of a company that affects its stock price, the past can become irrelevant and we must rapidly update our beliefs. Previous research has shown that, under certain conditions, human predictions are similar to those of mathematical, ideal-observer models that make accurate predictions in the presence of change-points. Despite this progress, these models require superhuman feats of memory and computation and thus are unlikely to be implemented directly in the brain. In this work, we address this conundrum by developing an approximation to the ideal-observer model that drastically reduces the computational load with only a minimal cost in performance. We show that this model better explains human behavior than other models, including the optimal model, and suggest it as a biologically plausible model for learning and prediction.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity.

          The authors present a unified account of 2 neural systems concerned with the development and expression of adaptive behaviors: a mesencephalic dopamine system for reinforcement learning and a "generic" error-processing system associated with the anterior cingulate cortex. The existence of the error-processing system has been inferred from the error-related negativity (ERN), a component of the event-related brain potential elicited when human participants commit errors in reaction-time tasks. The authors propose that the ERN is generated when a negative reinforcement learning signal is conveyed to the anterior cingulate cortex via the mesencephalic dopamine system and that this signal is used by the anterior cingulate cortex to modify performance on the task at hand. They provide support for this proposal using both computational modeling and psychophysiological experimentation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior.

            At the level of individual neurons, catecholamine release increases the responsivity of cells to excitatory and inhibitory inputs. A model of catecholamine effects in a network of neural-like elements is presented, which shows that (i) changes in the responsivity of individual elements do not affect their ability to detect a signal and ignore noise but (ii) the same changes in cell responsivity in a network of such elements do improve the signal detection performance of the network as a whole. The second result is used in a computer simulation based on principles of parallel distributed processing to account for the effect of central nervous system stimulants on the signal detection performance of human subjects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An approximately Bayesian delta-rule model explains the dynamics of belief updating in a changing environment.

              Maintaining appropriate beliefs about variables needed for effective decision making can be difficult in a dynamic environment. One key issue is the amount of influence that unexpected outcomes should have on existing beliefs. In general, outcomes that are unexpected because of a fundamental change in the environment should carry more influence than outcomes that are unexpected because of persistent environmental stochasticity. Here we use a novel task to characterize how well human subjects follow these principles under a range of conditions. We show that the influence of an outcome depends on both the error made in predicting that outcome and the number of similar outcomes experienced previously. We also show that the exact nature of these tendencies varies considerably across subjects. Finally, we show that these patterns of behavior are consistent with a computationally simple reduction of an ideal-observer model. The model adjusts the influence of newly experienced outcomes according to ongoing estimates of uncertainty and the probability of a fundamental change in the process by which outcomes are generated. A prior that quantifies the expected frequency of such environmental changes accounts for individual variability, including a positive relationship between subjective certainty and the degree to which new information influences existing beliefs. The results suggest that the brain adaptively regulates the influence of decision outcomes on existing beliefs using straightforward updating rules that take into account both recent outcomes and prior expectations about higher-order environmental structure.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                July 2013
                July 2013
                25 July 2013
                : 9
                : 7
                : e1003150
                Affiliations
                [1 ]Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
                [2 ]Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
                University of Oxford, United Kingdom
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: RCW MRN JIG. Performed the experiments: RCW MRN. Analyzed the data: RCW MRN. Contributed reagents/materials/analysis tools: RCW MRN. Wrote the paper: RCW MRN JIG.

                Article
                PCOMPBIOL-D-12-01490
                10.1371/journal.pcbi.1003150
                3723502
                23935472
                3c49b728-8145-41b7-8dd0-dd3dc69d99f7
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 September 2012
                : 6 June 2013
                Page count
                Pages: 18
                Funding
                This work was supported by grants NIH R01 EY015260 (to JIG) and F21 MH093099 (to MRN). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Neuroscience
                Cognitive Neuroscience
                Decision Making
                Learning and Memory
                Social and Behavioral Sciences
                Psychology
                Cognitive Psychology
                Learning

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article