1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The noncellular reduction of MTT tetrazolium salt by TiO₂ nanoparticles and its implications for cytotoxicity assays.

      Toxicology in vitro : an international journal published in association with BIBRA
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We report results of noncellular tests, revealing the occurrence of photocatalytic interactions between titanium dioxide (TiO2, titania) nanoparticles and the MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide] cytotoxicity indicator. These interactions induce the reduction of MTT and formation of purple formazan under biologically relevant conditions. Classical MTT assays have been performed to evaluate the production of formazan in DMEM-F12 and RPMI-1640 cell culture media (containing 10% fetal bovine serum-FBS) treated with Degussa-P25 TiO2 nanoparticles, in the absence of cells. The colorimetric determinations revealed the noncellular MTT to formazan transformation induced by TiO2 nanoparticles, under conditions commonly used for in vitro cytotoxicity testing of nanomaterials. The formazan precipitation was found to be proportional to the TiO2 concentration, being enhanced under laboratory daylight exposure. The photocatalytic nature of the studied effect was assessed under UV irradiation at 365nm. The biological significance of the reported reaction was established with respect to cellular reference experiments performed on V79-4, HeLa and B16 cell lines. The results show false viability increases with up to 14% (for TiO2 concentrations generally higher than 50μg/ml), induced by the TiO2-MTT reaction. This type of artifacts may lead to underestimated toxicity or false proliferation results.

          Related collections

          Author and article information

          Journal
          23531555
          10.1016/j.tiv.2013.03.006

          Comments

          Comment on this article

          scite_