40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of Ocean Warming and Ocean Acidification on Larval Development and Calcification in the Sea Urchin Tripneustes gratilla

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          As the oceans simultaneously warm, acidify and increase in P CO2, prospects for marine biota are of concern. Calcifying species may find it difficult to produce their skeleton because ocean acidification decreases calcium carbonate saturation and accompanying hypercapnia suppresses metabolism. However, this may be buffered by enhanced growth and metabolism due to warming.

          Methodology/Principal Findings

          We examined the interactive effects of near-future ocean warming and increased acidification/ P CO2 on larval development in the tropical sea urchin Tripneustes gratilla. Larvae were reared in multifactorial experiments in flow-through conditions in all combinations of three temperature and three pH/ P CO2 treatments. Experiments were placed in the setting of projected near future conditions for SE Australia, a global change hot spot. Increased acidity/ P CO2 and decreased carbonate mineral saturation significantly reduced larval growth resulting in decreased skeletal length. Increased temperature (+3°C) stimulated growth, producing significantly bigger larvae across all pH/ P CO2 treatments up to a thermal threshold (+6°C). Increased acidity (-0.3-0.5 pH units) and hypercapnia significantly reduced larval calcification. A +3°C warming diminished the negative effects of acidification and hypercapnia on larval growth.

          Conclusions and Significance

          This study of the effects of ocean warming and CO 2 driven acidification on development and calcification of marine invertebrate larvae reared in experimental conditions from the outset of development (fertilization) shows the positive and negative effects of these stressors. In simultaneous exposure to stressors the dwarfing effects of acidification were dominant. Reduction in size of sea urchin larvae in a high P CO2 ocean would likely impair their performance with negative consequent effects for benthic adult populations.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          Volcanic carbon dioxide vents show ecosystem effects of ocean acidification.

          The atmospheric partial pressure of carbon dioxide (p(CO(2))) will almost certainly be double that of pre-industrial levels by 2100 and will be considerably higher than at any time during the past few million years. The oceans are a principal sink for anthropogenic CO(2) where it is estimated to have caused a 30% increase in the concentration of H(+) in ocean surface waters since the early 1900s and may lead to a drop in seawater pH of up to 0.5 units by 2100 (refs 2, 3). Our understanding of how increased ocean acidity may affect marine ecosystems is at present very limited as almost all studies have been in vitro, short-term, rapid perturbation experiments on isolated elements of the ecosystem. Here we show the effects of acidification on benthic ecosystems at shallow coastal sites where volcanic CO(2) vents lower the pH of the water column. Along gradients of normal pH (8.1-8.2) to lowered pH (mean 7.8-7.9, minimum 7.4-7.5), typical rocky shore communities with abundant calcareous organisms shifted to communities lacking scleractinian corals with significant reductions in sea urchin and coralline algal abundance. To our knowledge, this is the first ecosystem-scale validation of predictions that these important groups of organisms are susceptible to elevated amounts of p(CO(2)). Sea-grass production was highest in an area at mean pH 7.6 (1,827 (mu)atm p(CO(2))) where coralline algal biomass was significantly reduced and gastropod shells were dissolving due to periods of carbonate sub-saturation. The species populating the vent sites comprise a suite of organisms that are resilient to naturally high concentrations of p(CO(2)) and indicate that ocean acidification may benefit highly invasive non-native algal species. Our results provide the first in situ insights into how shallow water marine communities might change when susceptible organisms are removed owing to ocean acidification.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation.

            Temperature controls the rate of fundamental biochemical processes and thereby regulates organismal attributes including development rate and survival. The increase in metabolic rate with temperature explains substantial among-species variation in life-history traits, population dynamics, and ecosystem processes. Temperature can also cause variability in metabolic rate within species. Here, we compare the effect of temperature on a key component of marine life cycles among a geographically and taxonomically diverse group of marine fish and invertebrates. Although innumerable lab studies document the negative effect of temperature on larval development time, little is known about the generality versus taxon-dependence of this relationship. We present a unified, parameterized model for the temperature dependence of larval development in marine animals. Because the duration of the larval period is known to influence larval dispersal distance and survival, changes in ocean temperature could have a direct and predictable influence on population connectivity, community structure, and regional-to-global scale patterns of biodiversity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Impact of near-future ocean acidification on echinoderms.

              As a consequence of increasing atmospheric CO(2), the world's oceans are warming and slowly becoming more acidic (ocean acidification, OA) and profound changes in marine ecosystems are certain. Calcification is one of the primary targets for studies of the impact of CO(2)-driven climate change in the oceans and one of the key marine groups most likely to be impacted by predicted climate change events are the echinoderms. Echinoderms are a vital component of the marine environment with representatives in virtually every ecosystem, where they are often keystone ecosystem engineers. This paper reviews and analyses what is known about the impact of near-future ocean acidification on echinoderms. A global analysis of the literature reveals that echinoderms are surprisingly robust to OA and that important differences in sensitivity to OA are observed between populations and species. However, this is modulated by parameters such as (1) exposure time with rare longer term experiments revealing negative impacts that are hidden in short or midterm ones; (2) bottlenecks in physiological processes and life-cycle such as stage-specific developmental phenomena that may drive the whole species responses; (3) ecological feedback transforming small scale sub lethal effects into important negative effects on fitness. We hypothesize that populations/species naturally exposed to variable environmental pH conditions may be pre-adapted to future OA highlighting the importance to understand and monitor environmental variations in order to be able to to predict sensitivity to future climate changes. More stress ecology research is needed at the frontier between ecotoxicology and ecology, going beyond standardized tests using model species in order to address multiple water quality factors (e.g. pH, temperature, toxicants) and organism health. However, available data allow us to conclude that near-future OA will have negative impact on echinoderm taxa with likely significant consequences at the ecosystem level.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                29 June 2010
                : 5
                : 6
                : e11372
                Affiliations
                [1 ]School of Medical Sciences, University of Sydney, Sydney, New South Whales, Australia
                [2 ]National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Whales, Australia
                [3 ]Institute for Conservation Biology, University of Wollongong, Wollongong, New South Whales, Australia
                [4 ]Schools of Medical and Biological Sciences, University of Sydney, Sydney, New South Whales, Australia
                Northern Fisheries Centre, Australia
                Author notes

                Conceived and designed the experiments: SD MB. Performed the experiments: HSB NS SD. Analyzed the data: HSB NS AD. Contributed reagents/materials/analysis tools: SD. Wrote the paper: HSB NS AD MB.

                Article
                10-PONE-RA-18110R1
                10.1371/journal.pone.0011372
                2894059
                20613879
                3c5984de-ff48-49f2-8baf-b02300e7cedd
                Sheppard Brennand et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 20 April 2010
                : 9 June 2010
                Page count
                Pages: 7
                Categories
                Research Article
                Developmental Biology/Morphogenesis and Cell Biology
                Marine and Aquatic Sciences/Climate Change
                Marine and Aquatic Sciences/Ecology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article