3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Association of carcinogenic polycyclic aromatic hydrocarbon emissions and smoking with lung cancer mortality rates on a global scale.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The objective of this research was to investigate the relationship between lung cancer mortality rates, carcinogenic polycyclic aromatic hydrocarbon (PAH) emissions, and smoking on a global scale, as well as for different socioeconomic country groups. The estimated lung cancer deaths per 100,000 people (ED100000) and age standardized lung cancer death rate per 100,000 people (ASDR100000) in 2004 were regressed on PAH emissions in benzo[a]pyrene equivalence (BaPeq), smoking prevalence, cigarette price, gross domestic product per capita, percentage of people with diabetes, and average body mass index using simple and multiple linear regression for 136 countries. Using stepwise multiple linear regression, a statistically significant positive linear relationship was found between loge(ED100000) and loge(BaPeq) emissions for high (p-value <0.01) and for the combination of upper-middle and high (p-value <0.05) socioeconomic country groups. A similar relationship was found between loge(ASDR100000) and loge(BaPeq) emissions for the combination of upper-middle and high (p-value <0.01) socioeconomic country groups. Conversely, for loge(ED100000) and loge(ASDR100000), smoking prevalence was the only significant independent variable in the low socioeconomic country group (p-value <0.001). These results suggest that reducing BaPeq emissions in the U.S., Canada, Australia, France, Germany, Brazil, South Africa, Poland, Mexico, and Malaysia could reduce ED100000, while reducing smoking prevalence in Democratic People's Republic of Korea, Nepal, Mongolia, Cambodia, and Bangladesh could significantly reduce the ED100000 and ASDR100000.

          Related collections

          Author and article information

          Journal
          Environ. Sci. Technol.
          Environmental science & technology
          American Chemical Society (ACS)
          1520-5851
          0013-936X
          Apr 02 2013
          : 47
          : 7
          Affiliations
          [1 ] Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States.
          Article
          NIHMS455921
          10.1021/es305295d
          3634325
          23472838
          3c59f4f6-c72d-40a7-a7d7-56e9d2260f29
          History

          Comments

          Comment on this article