1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Differential expression profiles of miRNA in granulomatous lobular mastitis and identification of possible biomarkers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The etiology and pathogenesis of granulomatous lobular mastitis (GLM) remain largely elusive and the expression levels and regulatory roles of microRNAs (miRNAs or miRs) in GLM have remained mostly undetermined. In the present study, the miRNAs that were differentially expressed in breast biopsy samples from patients with GLM and normal tissue adjacent to fibroadenoma were analyzed, a comprehensive differential expression profile of miRNAs was provided and potential biomarkers were screened out. The expression profile of miRNAs was determined by high-throughput sequencing in the tissues of patients with GLM and healthy controls. Significantly differentially expressed miRNAs were screened by threshold setting and cluster analysis and their target genes were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. Finally, circulating differentially expressed miRNAs between the GLM and control groups were further analyzed by reverse transcription-quantitative PCR (RT-qPCR). A total of 31,077 miRNAs were detected by high-throughput sequencing. By using the cutoff criteria of |log2 fold change|>2.5 and q<0.001, 13 miRNAs that were indicated to be GLM biomarkers were screened out. The expression levels of these 13 miRNAs in the GLM group were higher than those in the control group. GO and KEGG enrichment analyses suggested that the occurrence and development of GLM may be associated with autoimmune inflammation, metabolism and pathogenic organisms. miR-451a and miR-5571-3p were confirmed to be significantly increased in the serum of patients with GLM compared with their levels in the serum of healthy volunteers, which suggests that they may be used as biomarkers of GLM. To the best of our knowledge, the present study was the first report detailing genome-wide miRNA profiling of patients with GLM compared with controls. The possible targets and pathways of GLM were evaluated by bioinformatics analysis. The present study identified 13 differentially expressed miRNAs with important theoretical significance and potential application. Furthermore, miR-451a and miR-5571-3p were verified by RT-qPCR as possible biomarkers of GLM.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Analyzing real-time PCR data by the comparative C(T) method.

          Two different methods of presenting quantitative gene expression exist: absolute and relative quantification. Absolute quantification calculates the copy number of the gene usually by relating the PCR signal to a standard curve. Relative gene expression presents the data of the gene of interest relative to some calibrator or internal control gene. A widely used method to present relative gene expression is the comparative C(T) method also referred to as the 2 (-DeltaDeltaC(T)) method. This protocol provides an overview of the comparative C(T) method for quantitative gene expression studies. Also presented here are various examples to present quantitative gene expression data using this method.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation

            MicroRNAs (miRNAs) are a class of non-coding RNAs that play important roles in regulating gene expression. The majority of miRNAs are transcribed from DNA sequences into primary miRNAs and processed into precursor miRNAs, and finally mature miRNAs. In most cases, miRNAs interact with the 3′ untranslated region (3′ UTR) of target mRNAs to induce mRNA degradation and translational repression. However, interaction of miRNAs with other regions, including the 5′ UTR, coding sequence, and gene promoters, have also been reported. Under certain conditions, miRNAs can also activate translation or regulate transcription. The interaction of miRNAs with their target genes is dynamic and dependent on many factors, such as subcellular location of miRNAs, the abundancy of miRNAs and target mRNAs, and the affinity of miRNA-mRNA interactions. miRNAs can be secreted into extracellular fluids and transported to target cells via vesicles, such as exosomes, or by binding to proteins, including Argonautes. Extracellular miRNAs function as chemical messengers to mediate cell-cell communication. In this review, we provide an update on canonical and non-canonical miRNA biogenesis pathways and various mechanisms underlying miRNA-mediated gene regulations. We also summarize the current knowledge of the dynamics of miRNA action and of the secretion, transfer, and uptake of extracellular miRNAs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              KEGG for linking genomes to life and the environment

              KEGG (http://www.genome.jp/kegg/) is a database of biological systems that integrates genomic, chemical and systemic functional information. KEGG provides a reference knowledge base for linking genomes to life through the process of PATHWAY mapping, which is to map, for example, a genomic or transcriptomic content of genes to KEGG reference pathways to infer systemic behaviors of the cell or the organism. In addition, KEGG provides a reference knowledge base for linking genomes to the environment, such as for the analysis of drug-target relationships, through the process of BRITE mapping. KEGG BRITE is an ontology database representing functional hierarchies of various biological objects, including molecules, cells, organisms, diseases and drugs, as well as relationships among them. KEGG PATHWAY is now supplemented with a new global map of metabolic pathways, which is essentially a combined map of about 120 existing pathway maps. In addition, smaller pathway modules are defined and stored in KEGG MODULE that also contains other functional units and complexes. The KEGG resource is being expanded to suit the needs for practical applications. KEGG DRUG contains all approved drugs in the US and Japan, and KEGG DISEASE is a new database linking disease genes, pathways, drugs and diagnostic markers.
                Bookmark

                Author and article information

                Journal
                Exp Ther Med
                Exp Ther Med
                ETM
                Experimental and Therapeutic Medicine
                D.A. Spandidos
                1792-0981
                1792-1015
                August 2022
                08 June 2022
                08 June 2022
                : 24
                : 2
                : 500
                Affiliations
                [1 ]Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan 41000, P.R. China
                [2 ]Department of Hand Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 41000, P.R. China
                [3 ]Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 41000, P.R. China
                Author notes
                Correspondence to: Dr Lifang Liu or Dr Shiting Wu, Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Street, Changsha, Hunan 41000, P.R. China liulff@ 123456126.com 282379223@ 123456qq.com
                Article
                ETM-24-2-11427
                10.3892/etm.2022.11427
                9257833
                35837043
                3c5b83d2-48b0-4b5d-9d86-23ac7ed1c269
                Copyright: © Ling et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 25 February 2022
                : 16 May 2022
                Funding
                Funding: The present study was funded by the Hunan Province Clinical Medical Technology Innovation Guide Project (grant no. 2020SK51402) and The Hunan Traditional Chinese Medicine Scientific Research Project (grant no. 2021009).
                Categories
                Articles

                Medicine
                mirna,granulomatous lobular mastitis,gene expression profiles,high-throughput sequencing,biomarker

                Comments

                Comment on this article