4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Metabolic acidosis and malnutrition-inflammation complex syndrome in chronic renal failure.

      Seminars in Dialysis
      Acidosis, chemically induced, metabolism, Epoxy Compounds, adverse effects, Homeostasis, Humans, Hydrogen-Ion Concentration, Inflammation, Insulin Resistance, Kidney Failure, Chronic, therapy, Leptin, blood, Polyamines, Polyethylenes, Protein-Energy Malnutrition, Proteins, Renal Dialysis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Metabolic acidosis, a common condition in patients with renal failure, may be linked to protein-energy malnutrition (PEM) and inflammation, together also known as malnutrition-inflammation complex syndrome (MICS). Methods of serum bicarbonate measurement may misrepresent the true bicarbonate level, since the total serum carbon dioxide measurement usually overestimates the serum bicarbonate concentration. Moreover, the air transportation of blood samples to distant laboratories may lead to erroneous readings. In patients with chronic kidney disease (CKD) or end-stage renal disease (ESRD), a significant number of endocrine, musculoskeletal, and metabolic abnormalities are believed to result from acidemia. Metabolic acidosis may be related to PEM and MICS due to an increased protein catabolism, decreased protein synthesis, endocrine abnormalities including insulin resistance, decreased serum leptin level, and inflammation among individuals with renal failure. Evidence suggests that the catabolic effects of metabolic acidosis may result from an increased activity of the adenosine triphosphate (ATP)-dependent ubiquitin-proteasome and branched-chain keto acid dehydrogenase. In contrast to the metabolic studies, many epidemiologic studies in maintenance dialysis patients have indicated a paradoxically inverse association between mildly decreased serum bicarbonate and improved markers of protein-energy nutritional state. Hence metabolic acidosis may be considered as yet another element of the reverse epidemiology in ESRD patients. Interventional studies have yielded inconsistent results in CKD and ESRD patients, although in peritoneal dialysis patients, mitigating acidemia appears to more consistently improve nutritional status and reduce hospitalizations. Large-scale, prospective randomized interventional studies are needed to ascertain the potential benefits of correcting acidemia in malnourished and/or inflamed CKD and maintenance hemodialysis patients. Until then, all attempts should be made to adhere to the National Kidney Foundation Kidney Disease and Dialysis Outcome Quality Initiative guidelines to maintain a serum bicarbonate level in ESRD patients of at least 22 mEq/L.

          Related collections

          Author and article information

          Comments

          Comment on this article