23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genes related to inflammation and bone loss process in periodontitis suggested by bioinformatics methods

      research-article
      , , ,
      BMC Oral Health
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Despite of numerous studies on periodontitis, the mechanism underlying the progression of periodontitis still remains largely unknown. This study aimed to have an expression profiling comparison between periodontitis and normal control and to identify more candidate genes involved in periodontitis and to gain more insights into the molecular mechanisms of periodontitis progression.

          Methods

          The gene expression profile of GSE16134, comprising 241 gingival tissue specimens and 69 healthy samples as control which were obtained from 120 systemically healthy patients with periodontitis (65 with chronic and 55 with aggressive periodontitis), was downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) in periodontitis samples were screened using the limma package in R compared with control samples. Gene Ontology (GO) and pathway enrichment analysis upon the DEGs were carried out using Hypergeometric Distribution test. Protein-protein interaction (PPI) network of the DEGs was constructed using Cytoscape, followed by module selection from the PPI network using MCODE plugin. Moreover, transcription factors (TFs) of these DEGs were identified based on TRANSFAC database and then a regulatory network was constructed.

          Results

          Totally, 762 DEGs (507 up- and 255 down-regulated) in periodontitis samples were identified. DEGs were enriched in different GO terms and pathways, such as immune system process, cell activation biological processes, cytokine-cytokine receptor interaction, and metabolic pathways. Cathepsin S ( CTSS) and pleckstrin ( PLEK) were the hub proteins in the PPI network and 3 significant modules were selected. Moreover, 19 TFs were identified including interferon regulatory factor 8 (IRF8), and FBJ murine osteosarcoma viral oncogene homolog B (FOSB).

          Conclusion

          This study identified genes ( CTSS, PLEK, IRF-8, PTGS2, and FOSB) that may be involved in the development and progression of periodontitis.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12903-015-0086-7) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          TRANSFAC: transcriptional regulation, from patterns to profiles.

          The TRANSFAC database on eukaryotic transcriptional regulation, comprising data on transcription factors, their target genes and regulatory binding sites, has been extended and further developed, both in number of entries and in the scope and structure of the collected data. Structured fields for expression patterns have been introduced for transcription factors from human and mouse, using the CYTOMER database on anatomical structures and developmental stages. The functionality of Match, a tool for matrix-based search of transcription factor binding sites, has been enhanced. For instance, the program now comes along with a number of tissue-(or state-)specific profiles and new profiles can be created and modified with Match Profiler. The GENE table was extended and gained in importance, containing amongst others links to LocusLink, RefSeq and OMIM now. Further, (direct) links between factor and target gene on one hand and between gene and encoded factor on the other hand were introduced. The TRANSFAC public release is available at http://www.gene-regulation.com. For yeast an additional release including the latest data was made available separately as TRANSFAC Saccharomyces Module (TSM) at http://transfac.gbf.de. For CYTOMER free download versions are available at http://www.biobase.de:8080/index.html.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Periodontitis: a polymicrobial disruption of host homeostasis.

            Periodontitis, or gum disease, affects millions of people each year. Although it is associated with a defined microbial composition found on the surface of the tooth and tooth root, the contribution of bacteria to disease progression is poorly understood. Commensal bacteria probably induce a protective response that prevents the host from developing disease. However, several bacterial species found in plaque (the 'red-complex' bacteria: Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola) use various mechanisms to interfere with host defence mechanisms. Furthermore, disease may result from 'community-based' attack on the host. Here, I describe the interaction of the host immune system with the oral bacteria in healthy states and in diseased states.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response.

              Recent studies have uncovered novel mechanisms underlying the breakdown of periodontal host-microbe homeostasis, which can precipitate dysbiosis and periodontitis in susceptible hosts. Dysbiotic microbial communities of keystone pathogens and pathobionts are thought to exhibit synergistic virulence whereby not only can they endure the host response but can also thrive by exploiting tissue-destructive inflammation, which fuels a self-feeding cycle of escalating dysbiosis and inflammatory bone loss, potentially leading to tooth loss and systemic complications. Here, I discuss new paradigms in our understanding of periodontitis, which may shed light into other polymicrobial inflammatory disorders. In addition, I highlight gaps in knowledge required for an integrated picture of the interplay between microbes and innate and adaptive immune elements that initiate and propagate chronic periodontal inflammation.
                Bookmark

                Author and article information

                Contributors
                +86-021-24289300 , slenll@163.com
                yjueqi@126.com
                hwzhjing@126.com
                xubbinn@163.com
                Journal
                BMC Oral Health
                BMC Oral Health
                BMC Oral Health
                BioMed Central (London )
                1472-6831
                4 September 2015
                4 September 2015
                2015
                : 15
                : 105
                Affiliations
                [ ]Department of Stomatology, The Fifth People’s Hospital of Shanghai, Fudan University, No.128, Ruili Rd, Minhang District, Shanghai, 200240 China
                [ ]Department of Endodontics, Shanghai Oral Disease Prevention and Cure Center, Shanghai, 200031 China
                [ ]Department of Stomatology, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan Province China
                Article
                86
                10.1186/s12903-015-0086-7
                4559289
                26334995
                3c649f0b-0737-4c6e-a143-dcaeec2129d2
                © Song et al. 2015

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 2 June 2015
                : 18 August 2015
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2015

                Dentistry
                Dentistry

                Comments

                Comment on this article