20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nephrolithiasis: Molecular Mechanism of Renal Stone Formation and the Critical Role Played by Modulators

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Urinary stone disease is an ailment that has afflicted human kind for many centuries. Nephrolithiasis is a significant clinical problem in everyday practice with a subsequent burden for the health system. Nephrolithiasis remains a chronic disease and our fundamental understanding of the pathogenesis of stones as well as their prevention and cure still remains rudimentary. Regardless of the fact that supersaturation of stone-forming salts in urine is essential, abundance of these salts by itself will not always result in stone formation. The pathogenesis of calcium oxalate stone formation is a multistep process and essentially includes nucleation, crystal growth, crystal aggregation, and crystal retention. Various substances in the body have an effect on one or more of the above stone-forming processes, thereby influencing a person's ability to promote or prevent stone formation. Promoters facilitate the stone formation while inhibitors prevent it. Besides low urine volume and low urine pH, high calcium, sodium, oxalate and urate are also known to promote calcium oxalate stone formation. Many inorganic (citrate, magnesium) and organic substances (nephrocalcin, urinary prothrombin fragment-1, osteopontin) are known to inhibit stone formation. This review presents a comprehensive account of the mechanism of renal stone formation and the role of inhibitors/promoters in calcium oxalate crystallisation.

          Related collections

          Most cited references253

          • Record: found
          • Abstract: found
          • Article: not found

          MCP-1: chemoattractant with a role beyond immunity: a review.

          Monocyte Chemoattractant Protein (MCP)-1, a potent monocyte attractant, is a member of the CC chemokine subfamily. MCP-1 exerts its effects through binding to G-protein-coupled receptors on the surface of leukocytes targeted for activation and migration. Role of MCP-1 and its receptor CCR2 in monocyte recruitment during infection or under other inflammatory conditions is well known. A comprehensive literature search was conducted from the websites of the National Library of Medicine (http://www.ncbl.nlm.nih.gov) and Pubmed Central, the US National Library of Medicine's digital archive of life sciences literature (http://www.pubmedcentral.nih.gov/). The data was assessed from books and journals that published relevant articles in this field. Recent and ongoing research indicates the role of MCP-1 in various allergic conditions, immunodeficiency diseases, bone remodelling, and permeability of blood - brain barrier, atherosclerosis, nephropathies and tumors. MCP-1 plays an important role in pathogenesis of various disease states and hence MCP-1 inhibition may have beneficial effects in such conditions. 2010 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extracellular matrix mineralization is regulated locally; different roles of two gla-containing proteins

              Extracellular matrix mineralization (ECMM) is a physiologic process in the skeleton and in teeth and a pathologic one in other organs. The molecular mechanisms controlling ECMM are poorly understood. Inactivation of Matrix gla protein (Mgp) revealed that MGP is an inhibitor of ECMM. The fact that MGP is present in the general circulation raises the question of whether ECMM is regulated locally and/or systemically. Here, we show that restoration of Mgp expression in arteries rescues the arterial mineralization phenotype of Mgp−/− mice, whereas its expression in osteoblasts prevents bone mineralization. In contrast, raising the serum level of MGP does not affect mineralization of any ECM. In vivo mutagenesis experiments show that the anti-ECMM function of MGP requires four amino acids which are γ-carboxylated (gla residues). Surprisingly, another gla protein specific to bone and teeth (osteocalcin) does not display the anti-ECMM function of MGP. These results indicate that ECMM is regulated locally in animals and uncover a striking disparity of function between proteins sharing identical structural motifs.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2013
                14 September 2013
                : 2013
                : 292953
                Affiliations
                1Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234, India
                2Department of Biochemistry, Himalyan Institute Hospital Trust, Swami Ram Nagar, Dehradun, Uttrakhand 248140, India
                Author notes

                Academic Editor: Beatrice Charreau

                Author information
                http://orcid.org/0000-0002-8144-5014
                Article
                10.1155/2013/292953
                3787572
                24151593
                3c64ec92-e2ac-4871-9de3-5180310c3a58
                Copyright © 2013 Kanu Priya Aggarwal et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 April 2013
                : 26 July 2013
                Categories
                Review Article

                Comments

                Comment on this article