23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Re-Examination of Hebbian-Covariance Rules and Spike Timing-Dependent Plasticity in Cat Visual Cortex in vivo

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spike timing-dependent plasticity (STDP) is considered as an ubiquitous rule for associative plasticity in cortical networks in vitro. However, limited supporting evidence for its functional role has been provided in vivo. In particular, there are very few studies demonstrating the co-occurrence of synaptic efficiency changes and alteration of sensory responses in adult cortex during Hebbian or STDP protocols. We addressed this issue by reviewing and comparing the functional effects of two types of cellular conditioning in cat visual cortex. The first one, referred to as the “covariance” protocol, obeys a generalized Hebbian framework, by imposing, for different stimuli, supervised positive and negative changes in covariance between postsynaptic and presynaptic activity rates. The second protocol, based on intracellular recordings, replicated in vivo variants of the theta-burst paradigm (TBS), proven successful in inducing long-term potentiation in vitro. Since it was shown to impose a precise correlation delay between the electrically activated thalamic input and the TBS-induced postsynaptic spike, this protocol can be seen as a probe of causal (“pre-before-post”) STDP. By choosing a thalamic region where the visual field representation was in retinotopic overlap with the intracellularly recorded cortical receptive field as the afferent site for supervised electrical stimulation, this protocol allowed to look for possible correlates between STDP and functional reorganization of the conditioned cortical receptive field. The rate-based “covariance protocol” induced significant and large amplitude changes in receptive field properties, in both kitten and adult V1 cortex. The TBS STDP-like protocol produced in the adult significant changes in the synaptic gain of the electrically activated thalamic pathway, but the statistical significance of the functional correlates was detectable mostly at the population level. Comparison of our observations with the literature leads us to re-examine the experimental status of spike timing-dependent potentiation in adult cortex. We propose the existence of a correlation-based threshold in vivo, limiting the expression of STDP-induced changes outside the critical period, and which accounts for the stability of synaptic weights during sensory cortical processing in the absence of attention or reward-gated supervision.

          Related collections

          Most cited references100

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs.

          Activity-driven modifications in synaptic connections between neurons in the neocortex may occur during development and learning. In dual whole-cell voltage recordings from pyramidal neurons, the coincidence of postsynaptic action potentials (APs) and unitary excitatory postsynaptic potentials (EPSPs) was found to induce changes in EPSPs. Their average amplitudes were differentially up- or down-regulated, depending on the precise timing of postsynaptic APs relative to EPSPs. These observations suggest that APs propagating back into dendrites serve to modify single active synaptic connections, depending on the pattern of electrical activity in the pre- and postsynaptic neurons.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synaptic tagging and long-term potentiation.

            Repeated stimulation of hippocampal neurons can induce an immediate and prolonged increase in synaptic strength that is called long-term potentiation (LTP)-the primary cellular model of memory in the mammalian brain. An early phase of LTP (lasting less than three hours) can be dissociated from late-phase LTP by using inhibitors of transcription and translation, Because protein synthesis occurs mainly in the cell body, whereas LTP is input-specific, the question arises of how the synapse specificity of late LTP is achieved without elaborate intracellular protein trafficking. We propose that LTP initiates the creation of a short-lasting protein-synthesis-independent 'synaptic tag' at the potentiated synapse which sequesters the relevant protein(s) to establish late LTP. In support of this idea, we now show that weak tetanic stimulation, which ordinarily leads only to early LTP, or repeated tetanization in the presence of protein-synthesis inhibitors, each results in protein-synthesis-dependent late LTP, provided repeated tetanization has already been applied at another input to the same population of neurons. The synaptic tag decays in less than three hours. These findings indicate that the persistence of LTP depends not only on local events during its induction, but also on the prior activity of the neuron.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A neuronal learning rule for sub-millisecond temporal coding.

              A paradox that exists in auditory and electrosensory neural systems is that they encode behaviorally relevant signals in the range of a few microseconds with neurons that are at least one order of magnitude slower. The importance of temporal coding in neural information processing is not clear yet. A central question is whether neuronal firing can be more precise than the time constants of the neuronal processes involved. Here we address this problem using the auditory system of the barn owl as an example. We present a modelling study based on computer simulations of a neuron in the laminar nucleus. Three observations explain the paradox. First, spiking of an 'integrate-and-fire' neuron driven by excitatory postsynaptic potentials with a width at half-maximum height of 250 micros, has an accuracy of 25 micros if the presynaptic signals arrive coherently. Second, the necessary degree of coherence in the signal arrival times can be attained during ontogenetic development by virtue of an unsupervised hebbian learning rule. Learning selects connections with matching delays from a broad distribution of axons with random delays. Third, the learning rule also selects the correct delays from two independent groups of inputs, for example, from the left and right ear.
                Bookmark

                Author and article information

                Journal
                Front Synaptic Neurosci
                Front. Syn. Neurosci.
                Frontiers in Synaptic Neuroscience
                Frontiers Research Foundation
                1663-3563
                29 June 2010
                09 December 2010
                2010
                : 2
                : 147
                Affiliations
                [1] 1simpleCentre National de la Recherche Scientifique, Unité de Neuroscience, Information et Complexité Gif-sur-Yvette, France
                [2] 2simpleUniversité Paris-Sud Orsay, France
                Author notes

                Edited by: Henry Markram, Ecole Polytechnique Federale de Lausanne, Switzerland

                Reviewed by: Jochen Triesch, Johann Wolfgang Goethe University, Germany; John Lisman, Brandeis University, USA; Nicolangelo L. Iannella, RIKEN Brain Institute, Japan

                *Correspondence: Yves Frégnac, Centre National de la Recherche Scientifique, Unité de Neuroscience, Information et Complexité, UPR CNRS 3293, Gif-sur-Yvette F-91198, France. e-mail: fregnac@ 123456unic.cnrs-gif.fr
                Article
                10.3389/fnsyn.2010.00147
                3059677
                21423533
                3c6506fd-95ca-483a-8656-2ed2e08680ad
                Copyright © 2010 Frégnac, Pananceau, René, Huguet, Marre, Levy and Shulz.

                This is an open-access article subject to an exclusive license agreement between the authors and the Frontiers Research Foundation, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

                History
                : 19 May 2010
                : 28 October 2010
                Page count
                Figures: 10, Tables: 0, Equations: 0, References: 124, Pages: 21, Words: 18883
                Categories
                Neuroscience
                Original Research

                Neurosciences
                depression,hebb,correlation,receptive field,potentiation,intracellular,adult plasticity,v1
                Neurosciences
                depression, hebb, correlation, receptive field, potentiation, intracellular, adult plasticity, v1

                Comments

                Comment on this article