31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Physiological Response of the Hard Coral Pocillopora verrucosa from Lombok, Indonesia, to Two Common Pollutants in Combination with High Temperature

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Knowledge on interactive effects of global (e.g. ocean warming) and local stressors (e.g. pollution) is needed to develop appropriate management strategies for coral reefs. Surfactants and diesel are common coastal pollutants, but knowledge of their effects on hard corals as key reef ecosystem engineers is scarce. This study thus investigated the physiological reaction of Pocillopora verrucosa from Lombok, Indonesia, to exposure with a) the water-soluble fraction of diesel (determined by total polycyclic aromatic hydrocarbons (PAH); 0.69 ± 0.14 mg L-1), b) the surfactant linear alkylbenzene sulfonate (LAS; 0.95 ± 0.02 mg L-1) and c) combinations of each pollutant with high temperature (+3°C). To determine effects on metabolism, respiration, photosynthetic efficiency and coral tissue health were measured. Findings revealed no significant effects of diesel, while LAS resulted in severe coral tissue losses (16–95% after 84 h). High temperature led to an increase in photosynthetic yield of corals after 48 h compared to the control treatment, but no difference was detected thereafter. In combination, diesel and high temperature significantly increased coral dark respiration, whereas LAS and high temperature caused higher tissue losses (81–100% after 84 h) and indicated a severe decline in maximum quantum yield. These results confirm the hypothesized combined effects of high temperature with either of the two investigated pollutants. Our study demonstrates the importance of reducing import of these pollutants in coastal areas in future adaptive reef management, particularly in the context of ocean warming.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Metabolic depression in animals: physiological perspectives and biochemical generalizations.

          Depression of metabolic rate has been recorded for virtually all major animal phyla in response to environmental stress. The extent of depression is usually measured as the ratio of the depressed metabolic rate to the normal resting metabolic rate. Metabolic rate is sometimes only depressed to approx. 80% of the resting value (i.e. a depression of approx. 20% of resting); it is more commonly 5-40% of resting (i.e. a depression of approx. 60-95% of resting); extreme depression is to 1% or less of resting, or even to an unmeasurably low metabolic rate (i.e. a depression of approx. 99-100% of resting). We have examined the resting and depressed metabolic rate of animals as a function of their body mass, corrected to a common temperature. This allometric approach allows ready comparison of the absolute level of both resting and depressed metabolic rate for various animals, and suggests three general patterns of metabolic depression. Firstly, metabolic depression to approx. 0.05-0.4 of rest is a common and remarkably consistent pattern for various non-cryptobiotic animals (e.g. molluscs, earthworms, crustaceans, fishes, amphibians, reptiles). This extent of metabolic depression is typical for dormant animals with 'intrinsic' depression, i.e. reduction of metabolic rate in anticipation of adverse environmental conditions but without substantial changes to their ionic or osmotic status, or state of body water. Some of these types of animal are able to survive anoxia for limited periods, and their anaerobic metabolic depression is also to approx. 0.05-0.4 of resting. Metabolic depression to much less than 0.2 of resting is apparent for some 'resting', 'over-wintering' or diapaused eggs of these animals, but this can be due to early developmental arrest so that the egg has a low 'metabolic mass' of developed tissue (compared to the overall mass of the egg) with no metabolic depression, rather than having metabolic depression of the entire cell mass. A profound decrease in metabolic rate occurs in hibernating (or aestivating) mammals and birds during torpor, e.g. to less than 0.01 of pre-torpor metabolic rate, but there is often no intrinsic metabolic depression in addition to that reduction in metabolic rate due to readjustment of thermoregulatory control and a decrease in body temperature with a concommitant Q10 effect. There may be a modest intrinsic metabolic depression for some species in shallow torpor (to approx. 0.86) and a more substantial metabolic depression for deep torpor (approx. 0.6), but any energy saving accruing from this intrinsic depression is small compared to the substantial savings accrued from the readjustment of thermoregulation and the Q10 effect. Secondly, a more extreme pattern of metabolic depression (to < 0.05 of rest) is evident for cryptobiotic animals. For these animals there is a profound change in their internal environment--for anoxybiotic animals there is an absence of oxygen and for osmobiotic, anhydrobiotic or cryobiotic animals there is an alteration of the ionic/osmotic balance or state of body water. Some normally aerobic animals can tolerate anoxia for considerable periods, and their duration of tolerance is inversely related to their magnitude of metabolic depression; anaerobic metabolic rate can be less than 0.005 of resting. The metabolic rate of anhydrobiotic animals is often so low as to be unmeasurable, if not zero. Thus, anhydrobiosis is the ultimate strategy for eggs or other stages of the life cycle to survive extended periods of environmental stress. Thirdly, a pattern of absence of metabolism when normally hydrated (as opposed to anhydrobiotic or cryobiotic) is apparently unique to diapaused eggs of the brine-shrimp (Artemia spp., an anostracan crustacean) during anoxia. The apparent complete metabolic depression of anoxic yet hydrated cysts (and extreme metabolic depression of normoxic, hypoxic, or osmobiotic, yet hydrated cysts), is an obvious exception to the above patterns. (ABST
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Major Cellular and Physiological Impacts of Ocean Acidification on a Reef Building Coral

            As atmospheric levels of CO2 increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO2 conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biological activity and environmental impact of anionic surfactants.

              The newest results concerning the biological activity and environmental fate of anionic surfactants are collected and critically evaluated. The chemical and physicochemical parameters related to the biological activity and the field of application are briefly discussed. Examples on the effect of anionic surfactants on the cell membranes, on the activity of enzymes, on the binding to various proteins and to other cell components and on their human toxicity are presented and the possible mode of action is elucidated. The sources of environmental pollution caused by anionic surfactants are listed and the methods developed for their removal from liquid, semiliquid and solid matrices are collected. Both the beneficial and adversary effects of anionic surfactants on the environment are reported and critically discussed. It was concluded that the role of anionic surfactants in the environment is ambiguous: they can cause serous environmental pollution with toxic effect on living organisms; otherwise, they can promote the decomposition and/or removal of other inorganic and organic pollutants from the environment. The relationship between their chemical structure, physicochemical parameters, biological activity and environmental impact is notwell understood. A considerable number of data are needed for the development of new anionic surfactants and for the successful application of the existing ones to reduce the adversary and to promote beneficial effects.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                10 November 2015
                2015
                : 10
                : 11
                : e0142744
                Affiliations
                [1 ]Department of Ecology, Leibniz Center for Tropical Marine Ecology, Bremen, Germany
                [2 ]Mataram Marine Bio Industry Technical Implementation Unit, Research Center for Oceanography, Indonesian Institute of Sciences, Pemenang, Indonesia
                [3 ]Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
                King Abdullah University of Science and Technology, SAUDI ARABIA
                Author notes

                Competing Interests: The authors have read the journal's policy and the authors of this manuscript have the following competing interests: This study was partly funded by a commercial funding source, AiF Project GmbH. This does not alter the authors' adherence to PLoS One policies on sharing data and materials.

                Conceived and designed the experiments: PK GB AK. Performed the experiments: PK GB. Analyzed the data: PK. Contributed reagents/materials/analysis tools: LI. Wrote the paper: PK GB CW AK.

                Article
                PONE-D-15-25509
                10.1371/journal.pone.0142744
                4640544
                26555818
                3c6ae869-068d-4b09-9e58-d1f2a67450eb
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 11 June 2015
                : 25 October 2015
                Page count
                Figures: 4, Tables: 4, Pages: 19
                Funding
                This project was funded partly through AiF Projekt GmbH ( www.aif-projekt-gmbh.de, project ILAR no. 2665803MD3) and through the German Federal Ministry of Education and Research ( www.bmbf.de, project SPICE, grant no. 03F0641A) in the frame of the Indonesian German collaboration in marine research. Both grants were received through A Kunzmann. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are reported within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article