98
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Design, Synthesis, and Functional Activity of Labeled CD1d Glycolipid Agonists

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Invariant natural killer T cells ( iNKT cells) are restricted by CD1d molecules and activated upon CD1d-mediated presentation of glycolipids to T cell receptors (TCRs) located on the surface of the cell. Because the cytokine response profile is governed by the structure of the glycolipid, we sought a method for labeling various glycolipids to study their in vivo behavior. The prototypical CD1d agonist, α-galactosyl ceramide (α-GalCer) 1, instigates a powerful immune response and the generation of a wide range of cytokines when it is presented to iNKT cell TCRs by CD1d molecules. Analysis of crystal structures of the TCR−α-GalCer–CD1d ternary complex identified the α-methylene unit in the fatty acid side chain, and more specifically the pro- S hydrogen at this position, as a site for incorporating a label. We postulated that modifying the glycolipid in this way would exert a minimal impact on the TCR–glycolipid–CD1d ternary complex, allowing the labeled molecule to function as a good mimic for the CD1d agonist under investigation. To test this hypothesis, the synthesis of a biotinylated version of the CD1d agonist threitol ceramide (ThrCer) was targeted. Both diastereoisomers, epimeric at the label tethering site, were prepared, and functional experiments confirmed the importance of substituting the pro- S, and not the pro- R, hydrogen with the label for optimal activity. Significantly, functional experiments revealed that biotinylated ThrCer ( S)- 10 displayed behavior comparable to that of ThrCer 5 itself and also confirmed that the biotin residue is available for streptavidin and antibiotin antibody recognition. A second CD1d agonist, namely α-GalCer C20:2 4, was modified in a similar way, this time with a fluorescent label. The labeled α-GalCer C20:2 analogue ( 11) again displayed functional behavior comparable to that of its unlabeled substrate, supporting the notion that the α-methylene unit in the fatty acid amide chain should be a suitable site for attaching a label to a range of CD1d agonists. The flexibility of the synthetic strategy, and late-stage incorporation of the label, opens up the possibility of using this labeling approach to study the in vivo behavior of a wide range of CD1d agonists.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides.

          Natural killer T (NKT) lymphocytes express an invariant T cell antigen receptor (TCR) encoded by the Valpha14 and Jalpha281 gene segments. A glycosylceramide-containing alpha-anomeric sugar with a longer fatty acyl chain (C26) and sphingosine base (C18) was identified as a ligand for this TCR. Glycosylceramide-mediated proliferative responses of Valpha14 NKT cells were abrogated by treatment with chloroquine-concanamycin A or by monoclonal antibodies against CD1d/Vbeta8, CD40/CD40L, or B7/CTLA-4/CD28, but not by interference with the function of a transporter-associated protein. Thus, this lymphocyte shares distinct recognition systems with either T or NK cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Raising the NKT cell family.

            Natural killer T cells (NKT cells) are CD1d-restricted, lipid antigen-reactive, immunoregulatory T lymphocytes that can promote cell-mediated immunity to tumors and infectious organisms, including bacteria and viruses, yet paradoxically they can also suppress the cell-mediated immunity associated with autoimmune disease and allograft rejection. Furthermore, in some diseases, such as atherosclerosis and allergy, NKT cell activity can be deleterious to the host. Although the precise means by which these cells carry out such contrasting functions is unclear, recent studies have highlighted the existence of many functionally distinct NKT cell subsets. Because their frequency and number vary widely between individuals, it is important to understand the mechanisms that regulate the development and maintenance of NKT cells and subsets thereof, which is the subject of this review.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells.

              Experimental autoimmune encephalomyelitis (EAE) is a prototype autoimmune disease mediated by type 1 helper T (TH1) cells and under the control of regulatory cells. Here we report that a synthetic glycolipid ligand for CD1d-restricted natural killer T (NKT) cells expressing the semi-invariant T-cell receptor (Valpha14+) is preventive against EAE. The ligand is an analogue of alpha-galactosylceramide (alpha-GC), a prototype NKT cell ligand, with a truncated sphingosine chain. alpha-GC causes NKT cells to produce both interferon (IFN)-gamma and interleukin (IL)-4 (refs 4, 5). However, this new ligand can induce a predominant production of IL-4 by the NKT cells. A single injection of this glycolipid, but not of alpha-GC, consistently induced TH2 bias of autoimmune T cells by causing NKT cells to produce IL-4, leading to suppression of EAE. The lack of polymorphism of CD1d and cross-reactive response of mouse and human NKT cells to the same ligand indicates that targeting NKT cells with this ligand may be an attractive means for intervening in human autoimmune diseases such as multiple sclerosis.
                Bookmark

                Author and article information

                Journal
                Bioconjug Chem
                Bioconjug. Chem
                bc
                bcches
                Bioconjugate Chemistry
                American Chemical Society
                1043-1802
                1520-4812
                04 March 2013
                17 April 2013
                : 24
                : 4
                : 586-594
                Affiliations
                []School of Chemistry, University of Birmingham , Edgbaston, Birmingham B15 2TT, U.K.
                []School of Biosciences, University of Birmingham , Edgbaston, Birmingham B15 2TT, U.K.
                [§ ]Medical Research Council Human Immunology Unit, Nuffield Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford , Oxford OX3 9DS, U.K.
                Author notes
                Article
                10.1021/bc300556e
                3630740
                23458425
                3c735edb-cbf1-436a-85e6-a27a8bfcc880
                Copyright © 2013 American Chemical Society
                History
                : 10 October 2012
                : 21 February 2013
                Categories
                Article
                Custom metadata
                bc300556e
                bc-2012-00556e

                Biochemistry
                Biochemistry

                Comments

                Comment on this article