1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DoE-Assisted Development of a Novel Glycosaminoglycan-Based Injectable Formulation for Viscosupplementation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of the present work was the development of a novel glycosaminoglycan (GAG)-based injectable formulation intended for intra-articular administration that should best mimic the healthy synovial fluid. Hyaluronic acid (HA) was chosen among GAG polymers, since it is the most abundant component of the synovial fluid. A DoE (Design of Experiment) approach was used for the development of a formulation containing two HA (very high (VHMW) and low (LMW) molecular weight) grades. The rationale for this choice is that so far, no commercial product based on a single HA grade or even on binary HA mixture possesses optimal viscoelastic properties in comparison with healthy synovial fluid. A full factorial design was chosen to investigate the influence of concentration and relative fraction of the two polymer grades (retained as factors of the model) on formulation functional (viscosity and viscoelastic) properties, which are considered response variables. Thanks to the DoE approach, the composition of the optimized HA formulation was found. The addition to such formulation of an injectable grade fat-free soy phospholipid, which was rich in phosphatidylcholine (PC), resulted in improved lubrication properties. The final HA + PC formulation, packaged in pre-filled sterile syringes, was stable in long-term and accelerated ICH (International Council for Harmonisation) storage conditions. The overall results pointed out the formulation suitability for further steps of pharmaceutical developments, namely for the passage to pilot scale.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Hyaluronan.

          Hyaluronan (hyaluronic acid) is a high-molecular-mass polysaccharide found in the extracellular matrix, especially of soft connective tissues. It is synthesized in the plasma membrane of fibroblasts and other cells by addition of sugars to the reducing end of the polymer, whereas the nonreducing end protrudes into the pericellular space. The polysaccharide is catabolized locally or carried by lymph to lymph nodes or the general circulation, from where it is cleared by the endothelial cells of the liver sinusoids. The overall turnover rate is surprisingly rapid for a connective tissue matrix component (t1/2 0.5 to a few days). Hyaluronan has been assigned various physiological functions in the intercellular matrix, e.g., in water and plasma protein homeostasis. Hyaluronan production increases in proliferating cells and the polymer may play a role in mitosis. Extensive hyaluronidase-sensitive coats have been identified around mesenchymal cells. They are either anchored firmly in the plasma membrane or bound via hyaluronan-specific binding proteins (receptors). Such receptors have now been identified on many different cells, e.g., the lymphocyte homing receptor CD 44. Interaction between a hyaluronan receptor and extracellular polysaccharide has been connected with locomotion and cell migration. Hyaluronan seems to play an important role during development and differentiation and has other cell regulatory activities. Hyaluronan has also been recognized in clinical medicine. A concentrated solution of hyaluronan (10 mg/ml) has, through its tissue protective and rheological properties, become a device in ophthalmic surgery. Analysis of serum hyaluronan is promising in the diagnosis of liver disease and various inflammatory conditions, e.g., rheumatoid arthritis. Interstitial edema caused by accumulation of hyaluronan may cause dysfunction in various organs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Boundary lubrication of articular cartilage: role of synovial fluid constituents.

            To determine whether the synovial fluid (SF) constituents hyaluronan (HA), proteoglycan 4 (PRG4), and surface-active phospholipids (SAPL) contribute to boundary lubrication, either independently or additively, at an articular cartilage-cartilage interface. Cartilage boundary lubrication tests were performed with fresh bovine osteochondral samples. Tests were performed using graded concentrations of SF, HA, and PRG4 alone, a physiologic concentration of SAPL, and various combinations of HA, PRG4, and SAPL at physiologic concentrations. Static (mu(static, Neq)) and kinetic ( ) friction coefficients were calculated. Normal SF functioned as an effective boundary lubricant both at a concentration of 100% ( = 0.025) and at a 3-fold dilution ( = 0.029). Both HA and PRG4 contributed independently to a low mu in a dose-dependent manner. Values of decreased from approximately 0.24 in phosphate buffered saline to 0.12 in 3,300 mug/ml HA and 0.11 in 450 mug/ml PRG4. HA and PRG4 in combination lowered mu further at the high concentrations, attaining a value of 0.066. SAPL at 200 mug/ml did not significantly lower mu, either independently or in combination with HA and PRG4. The results described here indicate that SF constituents contribute, individually and in combination, both at physiologic and pathophysiologic concentrations, to the boundary lubrication of apposing articular cartilage surfaces. These results provide insight into the nature of the boundary lubrication of articular cartilage by SF and its constituents. They therefore provide insight regarding both the homeostatic maintenance of healthy joints and pathogenic processes in arthritic disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Hyaluronan and synovial joint: function, distribution and healing

              Synovial fluid is a viscous solution found in the cavities of synovial joints. The principal role of synovial fluid is to reduce friction between the articular cartilages of synovial joints during movement. The presence of high molar mass hyaluronan (HA) in this fluid gives it the required viscosity for its function as lubricant solution. Inflammation oxidation stress enhances normal degradation of hyaluronan causing several diseases related to joints. This review describes hyaluronan properties and distribution, applications and its function in synovial joints, with short review for using thiol compounds as antioxidants preventing HA degradations under inflammation conditions.
                Bookmark

                Author and article information

                Journal
                Pharmaceutics
                Pharmaceutics
                pharmaceutics
                Pharmaceutics
                MDPI
                1999-4923
                20 July 2020
                July 2020
                : 12
                : 7
                : 681
                Affiliations
                [1 ]R&D Department, IBSA Farmaceutici Italia Srl, Via Martiri di Cefalonia 2, 26900 Lodi, Italy; marta.cicognani@ 123456ibsa.it (M.C.); gabriele.vecchi@ 123456ibsa.it (G.V.); andrea.giori@ 123456ibsa.it (A.M.G.)
                [2 ]Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy; franca.ferrari@ 123456unipv.it
                Author notes
                [* ]Correspondence: silvia.rossi@ 123456unipv.it ; Tel.: +39-0382-987357
                Author information
                https://orcid.org/0000-0001-9511-3857
                Article
                pharmaceutics-12-00681
                10.3390/pharmaceutics12070681
                7407620
                32698313
                3c75ad58-c64d-457f-80a1-2add095fb22e
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 28 June 2020
                : 14 July 2020
                Categories
                Article

                hyaluronic acid,viscoelastic injectable solutions,viscosupplementation,doe approach,phosphatidylcholine,tribology measurements

                Comments

                Comment on this article