7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Differential MicroRNA Landscape Triggered by Estrogens in Cancer Associated Fibroblasts (CAFs) of Primary and Metastatic Breast Tumors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cancer associated fibroblasts (CAFs) play a main role in breast cancer progression and metastasis. Estrogens modulate in breast CAFs the expression of microRNAs (miRNAs) that are involved in the development of many tumors. In order to provide novel insights on the regulation of miRNAs by estrogens in breast cancer, we analyzed the expression of 754 miRNAs in CAFs obtained from primary mammary tumors and CAFs derived from a cutaneous breast cancer metastasis. Using the TaqMan™ Human MicroRNA Array, we found that 17β-estradiol (E2) modulates numerous peculiar and common miRNAs in CAFs derived from primary and the metastatic malignancies. In particular, we assessed that E2 modulates 133 miRNAs (41 up and 92 downregulated) in CAFs derived from primary breast tumors, whereas E2 modulates 415 miRNAs (399 up and 16 downregulated) in CAFs derived from a cutaneous metastasis of breast carcinoma. Therefore, a number of miRNAs three times higher in metastatic CAFs with respect to primary breast CAFs was found modulated by E2. Our findings shed new light on the cumulative regulation of miRNAs by E2 in the main players of the tumor microenvironment as CAFs. Moreover, our data may be taken into consideration that is useful toward innovative prognostic and therapeutic approaches in breast cancer progression.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Metastatic breast cancer: the potential of miRNA for diagnosis and treatment monitoring

          Breast cancer affects approximately 12 % women worldwide and results in 14 % of all cancer-related fatalities. Breast cancer is commonly categorized into one of four main subtypes (luminal A, luminal B, human epidermal growth factor receptor 2 (HER2) positive and basal), indicating molecular characteristics and informing treatment regimes. The most severe form of breast cancer is metastasis, when the tumour spreads from the breast tissue to other parts of the body. Significantly, the primary tumour subtype affects rates and sites of metastasis. Currently, up to 5 % of patients present with incurable metastasis, with an additional 10–15 % of patients going on to develop metastasis within 3 years of diagnosis. MicroRNAs (miRNAs) are short 21–25 long nucleotides that have been shown to significantly affect gene expression. Currently, >2000 miRNAs have been identified and significantly, specific miRNAs have been found associated with diseases states. Importantly, miRNAs are found circulating in the blood, presenting an opportunity to use these circulating disease-related miRNAs as biomarkers. Clearly, the identification of circulating miRNA specific to metastatic breast cancer presents a unique opportunity for early disease identification and for monitoring disease burden. Currently however, few groups have identified miRNA associated with metastatic breast cancer. Here, we review the literature surrounding the identification of metastatic miRNA in breast cancer patients, highlighting key areas where miRNA biomarker discovery could be beneficial, identifying key concepts, recognizing critical areas requiring further research and discussing potential problems.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Estrogen production and action

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Estrogenic GPR30 signalling induces proliferation and migration of breast cancer cells through CTGF.

              The steroid hormone oestrogen can signal through several receptors and pathways. Although the transcriptional responses mediated by the nuclear oestrogen receptors (ER) have been extensively characterized, the changes in gene expression elicited by signalling through the membrane-associated ER GPR30 have not been studied. We show here for ER-negative human breast cancer cells that the activation of GPR30 signalling by oestrogen or by hydroxytamoxifen (OHT), an ER antagonist but GPR30 agonist, induces a transcription factor network, which resembles that induced by serum in fibroblasts. The most strongly induced gene, CTGF, appears to be a target of these transcription factors. We found that the secreted factor connective tissue growth factor (CTGF) not only contributes to promote proliferation but also mediates the GPR30-induced stimulation of cell migration. These results provide a framework for understanding the physiological and pathological functions of GPR30. As the activation of GPR30 by OHT also induces CTGF in fibroblasts from breast tumour biopsies, these pathways may be involved in promoting aggressive behaviour of breast tumours in response to endogenous oestrogens or to OHT being used for endocrine therapy.
                Bookmark

                Author and article information

                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                23 March 2019
                March 2019
                : 11
                : 3
                : 412
                Affiliations
                [1 ]Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; mariagraziamuoio@ 123456libero.it
                [2 ]Breast Unit, Regional Hospital Cosenza, 87100 Cosenza, Italy; annamariamiglietta@ 123456virgilio.it
                Author notes
                Article
                cancers-11-00412
                10.3390/cancers11030412
                6468788
                30909585
                3c787d57-c953-45c7-bb14-bf1eb4de9b62
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 25 January 2019
                : 20 March 2019
                Categories
                Article

                breast cancer,metastasis,cafs,estrogens,micrornas
                breast cancer, metastasis, cafs, estrogens, micrornas

                Comments

                Comment on this article