9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Insulin-like growth factor 1 inhibits apoptosis using the phosphatidylinositol 3'-kinase and mitogen-activated protein kinase pathways.

      The Journal of Biological Chemistry
      Androstadienes, pharmacology, Animals, Apoptosis, Calcium-Calmodulin-Dependent Protein Kinases, antagonists & inhibitors, physiology, Chromones, Drug Synergism, Enzyme Inhibitors, Flavonoids, Insulin-Like Growth Factor I, Morpholines, PC12 Cells, Phosphatidylinositol 3-Kinases, Phosphotransferases (Alcohol Group Acceptor), Polyenes, Protein-Serine-Threonine Kinases, Rats, Ribosomal Protein S6 Kinases, Signal Transduction, Sirolimus

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The role of insulin-like growth factor 1 (IGF-1) in preventing apoptosis was examined in differentiated PC12 cells. Induction of differentiation was achieved using nerve growth factor, and apoptosis was provoked by serum withdrawal. After 4-6 h of serum deprivation, apoptosis was initiated, concomitant with a 30% decrease in cell number and a 75% decrease in MTT activity. IGF-1 was capable of preventing apoptosis at concentrations as low as 10(-9) M and as early as 4 h. The phosphatidylinositol 3' (PI3')-kinase inhibitors wortmannin (at concentrations of 10(-8) M) and LY294002 (10(-6) M) blocked the effect of IGF-1. The pp70 S6 kinase (pp70S6K) inhibitor rapamycin (10(-8) M) was, however, less effective in blocking IGF-1 action. Moreover, stable transfection of a dominant-negative p85 (subunit of PI3'-kinase) construct in PC12 cells enhanced apoptosis provoked by serum deprivation. Interestingly, in the cells overexpressing the dominant-negative p85 protein, IGF-1 was still capable of inhibiting apoptosis, suggesting the existence of a second pathway involved in the IGF-1 effect. Blocking the mitogen-activated protein kinase pathway with the specific mitogen-activated protein kinase/extracellular-response kinase kinase inhibitor PD098059 (10(-5) M) inhibited the IGF-1 effect. When wortmannin and PD098059 were given together, the effect was synergistic. The results presented here suggest that IGF-1 is capable of preventing apoptosis by activation of multiple signal transduction pathways.

          Related collections

          Author and article information

          Comments

          Comment on this article