126
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Transport and Burial of Microplastics in Deep-Marine Sediments by Turbidity Currents

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The threat posed by plastic pollution to marine ecosystems and human health is under increasing scrutiny. Much of the macro- and microplastic in the ocean ends up on the seafloor, with some of the highest concentrations reported in submarine canyons that intersect the continental shelf and directly connect to terrestrial plastic sources. Gravity-driven avalanches, known as turbidity currents, are the primary process for delivering terrestrial sediment and organic carbon to the deep sea through submarine canyons. However, the ability of turbidity currents to transport and bury plastics is essentially unstudied. Using flume experiments, we investigate how turbidity currents transport microplastics, and their role in differential burial of microplastic fragments and fibers. We show that microplastic fragments become relatively concentrated within the base of turbidity currents, whereas fibers are more homogeneously distributed throughout the flow. Surprisingly, the resultant deposits show an opposing trend, as they are enriched with fibers, rather than fragments. We explain this apparent contradiction by a depositional mechanism whereby fibers are preferentially removed from suspension and buried in the deposits as they are trapped between settling sand-grains. Our results suggest that turbidity currents potentially distribute and bury large quantities of microplastics in seafloor sediments.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Human Consumption of Microplastics

          Microplastics are ubiquitous across ecosystems, yet the exposure risk to humans is unresolved. Focusing on the American diet, we evaluated the number of microplastic particles in commonly consumed foods in relation to their recommended daily intake. The potential for microplastic inhalation and how the source of drinking water may affect microplastic consumption were also explored. Our analysis used 402 data points from 26 studies, which represents over 3600 processed samples. Evaluating approximately 15% of Americans' caloric intake, we estimate that annual microplastics consumption ranges from 39000 to 52000 particles depending on age and sex. These estimates increase to 74000 and 121000 when inhalation is considered. Additionally, individuals who meet their recommended water intake through only bottled sources may be ingesting an additional 90000 microplastics annually, compared to 4000 microplastics for those who consume only tap water. These estimates are subject to large amounts of variation; however, given methodological and data limitations, these values are likely underestimates.
            • Record: found
            • Abstract: found
            • Article: not found

            High Quantities of Microplastic in Arctic Deep-Sea Sediments from the HAUSGARTEN Observatory

            Although mounting evidence suggests the ubiquity of microplastic in aquatic ecosystems worldwide, our knowledge of its distribution in remote environments such as Polar Regions and the deep sea is scarce. Here, we analyzed nine sediment samples taken at the HAUSGARTEN observatory in the Arctic at 2340-5570 m depth. Density separation by MicroPlastic Sediment Separator and treatment with Fenton's reagent enabled analysis via Attenuated Total Reflection FTIR and μFTIR spectroscopy. Our analyses indicate the wide spread of high numbers of microplastics (42-6595 microplastics kg-1). The northernmost stations harbored the highest quantities, indicating sea ice as a possible transport vehicle. A positive correlation between microplastic abundance and chlorophyll a content suggests vertical export via incorporation in sinking (ice-) algal aggregates. Overall, 18 different polymers were detected. Chlorinated polyethylene accounted for the largest proportion (38%), followed by polyamide (22%) and polypropylene (16%). Almost 80% of the microplastics were ≤25 μm. The microplastic quantities are among the highest recorded from benthic sediments. This corroborates the deep sea as a major sink for microplastics and the presence of accumulation areas in this remote part of the world, fed by plastics transported to the North via the Thermohaline Circulation.
              • Record: found
              • Abstract: found
              • Article: not found

              Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system.

              Continental erosion controls atmospheric carbon dioxide levels on geological timescales through silicate weathering, riverine transport and subsequent burial of organic carbon in oceanic sediments. The efficiency of organic carbon deposition in sedimentary basins is however limited by the organic carbon load capacity of the sediments and organic carbon oxidation in continental margins. At the global scale, previous studies have suggested that about 70 per cent of riverine organic carbon is returned to the atmosphere, such as in the Amazon basin. Here we present a comprehensive organic carbon budget for the Himalayan erosional system, including source rocks, river sediments and marine sediments buried in the Bengal fan. We show that organic carbon export is controlled by sediment properties, and that oxidative loss is negligible during transport and deposition to the ocean. Our results indicate that 70 to 85 per cent of the organic carbon is recent organic matter captured during transport, which serves as a net sink for atmospheric carbon dioxide. The amount of organic carbon deposited in the Bengal basin represents about 10 to 20 per cent of the total terrestrial organic carbon buried in oceanic sediments. High erosion rates in the Himalayas generate high sedimentation rates and low oxygen availability in the Bay of Bengal that sustain the observed extreme organic carbon burial efficiency. Active orogenic systems generate enhanced physical erosion and the resulting organic carbon burial buffers atmospheric carbon dioxide levels, thereby exerting a negative feedback on climate over geological timescales.

                Author and article information

                Journal
                Environ Sci Technol
                Environ. Sci. Technol
                es
                esthag
                Environmental Science & Technology
                American Chemical Society
                0013-936X
                1520-5851
                06 March 2020
                07 April 2020
                : 54
                : 7
                : 4180-4189
                Affiliations
                []Faculty of Geosciences, Utrecht University , PO Box 80021, 3508TA Utrecht, The Netherlands
                []Department of Earth Sciences, Durham University , Durham 1DH 3LE, United Kingdom
                [§ ]School of Earth and Environmental Sciences, University of Manchester , Manchester M13 9PL, United Kingdom
                []National Oceanography Centre , European Way, Southampton SO14 3ZH, United Kingdom
                Author notes
                Article
                10.1021/acs.est.9b07527
                7252949
                32142607
                3c8de877-af10-4865-b7d1-f3fd3c79ebef
                Copyright © 2020 American Chemical Society

                This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

                History
                : 11 December 2019
                : 06 March 2020
                : 04 March 2020
                Categories
                Article
                Custom metadata
                es9b07527
                es9b07527

                General environmental science
                General environmental science

                Comments

                Comment on this article

                Related Documents Log