9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Epithelial Cell Cycle Behaviour in the Injured Kidney

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acute kidney injury (AKI), commonly caused by ischemia-reperfusion injury, has far-reaching health consequences. Despite the significant regenerative capacity of proximal tubular epithelium cells (PTCs), repair frequently fails, leading to the development of chronic kidney disease (CKD). In the last decade, it has been repeatedly demonstrated that dysregulation of the cell cycle can cause injured kidneys to progress to CKD. More precisely, severe AKI causes PTCs to arrest in the G1/S or G2/M phase of the cell cycle, leading to maladaptive repair and a fibrotic outcome. The mechanisms causing these arrests are far from known. The arrest might, at least partially, be attributed to DNA damage since activation of the DNA-damage response pathway leads to cell cycle arrest. Alternatively, cytokine signalling via nuclear factor kappa beta (NF-κβ) and p38-mitogen-activated protein kinase (p38-MAPK) pathways, and reactive oxygen species (ROS) can play a role independent of DNA damage. In addition, only a handful of cell cycle regulators (e.g., p53, p21) have been thoroughly studied during renal repair. Still, why and how PTCs decide to arrest their cell cycle and how this arrest can efficiently be overcome remain open and challenging questions. In this review we will discuss the evidence for cell cycle involvement during AKI and development of CKD together with putative therapeutic approaches.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Chemokine signaling via the CXCR2 receptor reinforces senescence.

          Cells enter senescence, a state of stable proliferative arrest, in response to a variety of cellular stresses, including telomere erosion, DNA damage, and oncogenic signaling, which acts as a barrier against malignant transformation in vivo. To identify genes controlling senescence, we conducted an unbiased screen for small hairpin RNAs that extend the life span of primary human fibroblasts. Here, we report that knocking down the chemokine receptor CXCR2 (IL8RB) alleviates both replicative and oncogene-induced senescence (OIS) and diminishes the DNA-damage response. Conversely, ectopic expression of CXCR2 results in premature senescence via a p53-dependent mechanism. Cells undergoing OIS secrete multiple CXCR2-binding chemokines in a program that is regulated by the NF-kappaB and C/EBPbeta transcription factors and coordinately induce CXCR2 expression. CXCR2 upregulation is also observed in preneoplastic lesions in vivo. These results suggest that senescent cells activate a self-amplifying secretory network in which CXCR2-binding chemokines reinforce growth arrest.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathophysiology of acute kidney injury.

            Acute kidney injury (AKI) is the leading cause of nephrology consultation and is associated with high mortality rates. The primary causes of AKI include ischemia, hypoxia, or nephrotoxicity. An underlying feature is a rapid decline in glomerular filtration rate (GFR) usually associated with decreases in renal blood flow. Inflammation represents an important additional component of AKI leading to the extension phase of injury, which may be associated with insensitivity to vasodilator therapy. It is suggested that targeting the extension phase represents an area potential of treatment with the greatest possible impact. The underlying basis of renal injury appears to be impaired energetics of the highly metabolically active nephron segments (i.e., proximal tubules and thick ascending limb) in the renal outer medulla, which can trigger conversion from transient hypoxia to intrinsic renal failure. Injury to kidney cells can be lethal or sublethal. Sublethal injury represents an important component in AKI, as it may profoundly influence GFR and renal blood flow. The nature of the recovery response is mediated by the degree to which sublethal cells can restore normal function and promote regeneration. The successful recovery from AKI depends on the degree to which these repair processes ensue and these may be compromised in elderly or chronic kidney disease (CKD) patients. Recent data suggest that AKI represents a potential link to CKD in surviving patients. Finally, earlier diagnosis of AKI represents an important area in treating patients with AKI that has spawned increased awareness of the potential that biomarkers of AKI may play in the future. © 2012 American Physiological Society. Compr Physiol 2:1303-1353, 2012.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cellular and molecular mechanisms in kidney fibrosis.

              Fibrosis is a characteristic feature of all forms of chronic kidney disease. Deposition of pathological matrix in the interstitial space and within the walls of glomerular capillaries as well as the cellular processes resulting in this deposition are increasingly recognized as important factors amplifying kidney injury and accelerating nephron demise. Recent insights into the cellular and molecular mechanisms of fibrogenesis herald the promise of new therapies to slow kidney disease progression. This review focuses on new findings that enhance understanding of cellular and molecular mechanisms of fibrosis, the characteristics of myofibroblasts, their progenitors, and molecular pathways regulating both fibrogenesis and its resolution.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                13 July 2018
                July 2018
                : 19
                : 7
                : 2038
                Affiliations
                Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; lies.moonen@ 123456uantwerpen.be (L.M.); patrick.dhaese@ 123456uantwerpen.be (P.C.D.)
                Author notes
                [* ]Correspondence: benjamin.vervaet@ 123456uantwerpen.be ; Tel.: +32-(0)-3-265-2755
                Article
                ijms-19-02038
                10.3390/ijms19072038
                6073451
                30011818
                3c97b57e-4ca0-433d-a3d6-b77d4129d287
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 10 June 2018
                : 10 July 2018
                Categories
                Review

                Molecular biology
                aki,ckd,cell cycle,proximal epithelium cell,g1/s arrest,g2/m arrest
                Molecular biology
                aki, ckd, cell cycle, proximal epithelium cell, g1/s arrest, g2/m arrest

                Comments

                Comment on this article