7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Associations between early body mass index trajectories and later metabolic risk factors in European children: the IDEFICS study

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Fetal origins of coronary heart disease.

          The fetal origins hypothesis states that fetal undernutrition in middle to late gestation, which leads to disproportionate fetal growth, programmes later coronary heart disease. Animal studies have shown that undernutrition before birth programmes persisting changes in a range of metabolic, physiological, and structural parameters. Studies in humans have shown that men and women whose birth weights were at the lower end of the normal range, who were thin or short at birth, or who were small in relation to placental size have increased rates of coronary heart disease. We are beginning to understand something of the mechanisms underlying these associations. The programming of blood pressure, insulin responses to glucose, cholesterol metabolism, blood coagulation, and hormonal settings are all areas of active research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In utero programming of chronic disease.

            1. Many human fetuses have to adapt to a limited supply of nutrients. In doing so they permanently change their structure and metabolism. 2. These 'programmed' changes may be the origins of a number of diseases in later life, including coronary heart disease and the related disorders stroke, diabetes and hypertension. 3. This review examines the evidence linking these diseases to fetal undernutrition and provides an overview of previous studies in this area.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Early adiposity rebound: causes and consequences for obesity in children and adults.

              Childhood obesity is an important public health problem, with a rapidly increasing frequency worldwide. Identification of critical periods for the development of childhood and adolescent obesity could be very useful for targeting prevention measures. Weight status in early childhood is a poor predictor of adult adiposity status, and most obese adults were not obese as children. We first proposed to use the body mass index (BMI) charts to monitor individual BMI development. The adiposity rebound (AR) corresponds to the second rise in BMI curve that occurs between ages 5 and 7 years. It is not as direct a measure as BMI at any age, but because it involves the examination of several points during growth, and because it is identified at a time when adiposity level clearly change directions, this method provides information that can help us understand individual changes and the development of health risks. An early AR is associated with an increased risk of overweight. It is inversely associated with bone age, and reflects accelerated growth. The early AR recorded in most obese subjects and the striking difference in the mean age at AR between obese subjects (3 years) and non-obese subjects (6 years) suggest that factors have operated very early in life. The typical pattern associated with an early AR is a low BMI followed by increased BMI level after the rebound. This pattern is recorded in children of recent generations as compared to those of previous generations. This is owing to the trend of a steeper increase of height as compared to weight in the first years of life. This typical BMI pattern (low, followed by high body fatness level) is associated with metabolic diseases such as diabetes and coronary heart diseases. Low body fatness before the AR suggests that an energy deficit had occurred at an early stage of growth. It can be attributable to the high-protein, low-fat diet fed to infants at a time of high energy needs, the former triggering height velocity and the latter decreasing the energy density of the diet and then reducing energy intake. The high-fat, low-protein content of human milk may contribute to its beneficial effects on growth processes. Early (pre- and postnatal) life is a critical period during which environmental factors may programme adaptive mechanisms that will persist in adulthood. Under-nutrition in fetal life or during the first years after birth may programme a thrifty metabolism that will exert adverse effects later in life, especially if the growing child is exposed to overnutrition. These observations stress the importance of an adequate nutritional status in childhood and the necessity to provide nutritional intakes adapted to nutritional needs at various stages of growth. Because the AR reflects particular BMI patterns, it is a useful tool for the paediatrician to monitor the child's adiposity development and for researchers to investigate the different developmental patterns leading to overweight. It contributes to the understanding of chronic disease programming and suggests new approaches to obesity prevention.
                Bookmark

                Author and article information

                Journal
                European Journal of Epidemiology
                Eur J Epidemiol
                Springer Nature America, Inc
                0393-2990
                1573-7284
                May 2016
                August 22 2015
                May 2016
                : 31
                : 5
                : 513-525
                Article
                10.1007/s10654-015-0080-z
                26297214
                3c9d5bfe-0b8a-4026-b93e-da101697eac1
                © 2016

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article