30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Uncoupling lifespan and healthspan in Caenorhabditis elegans longevity mutants.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aging research has been very successful at identifying signaling pathways and evolutionarily conserved genes that extend lifespan with the assumption that an increase in lifespan will also increase healthspan. However, it is largely unknown whether we are extending the healthy time of life or simply prolonging a period of frailty with increased incidence of age-associated diseases. Here we use Caenorhabditis elegans, one of the premiere systems for lifespan studies, to determine whether lifespan and healthspan are intrinsically correlated. We conducted multiple cellular and organismal assays on wild type as well as four long-lived mutants (insulin/insulin-like growth factor-1, dietary restriction, protein translation, mitochondrial signaling) in a longitudinal manner to determine the health of the animals as they age. We find that some long-lived mutants performed better than wild type when measured chronologically (number of days). However, all long-lived mutants increased the proportion of time spent in a frail state. Together, these data suggest that lifespan can no longer be the sole parameter of interest and reveal the importance of evaluating multiple healthspan parameters for future studies on antiaging interventions.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation.

          Eukaryotic translation initiation factor 4F (eIF4F) is a protein complex that mediates recruitment of ribosomes to mRNA. This event is the rate-limiting step for translation under most circumstances and a primary target for translational control. Functions of the constituent proteins of eIF4F include recognition of the mRNA 5' cap structure (eIF4E), delivery of an RNA helicase to the 5' region (eIF4A), bridging of the mRNA and the ribosome (eIF4G), and circularization of the mRNA via interaction with poly(A)-binding protein (eIF4G). eIF4 activity is regulated by transcription, phosphorylation, inhibitory proteins, and proteolytic cleavage. Extracellular stimuli evoke changes in phosphorylation that influence eIF4F activity, especially through the phosphoinositide 3-kinase (PI3K) and Ras signaling pathways. Viral infection and cellular stresses also affect eIF4F function. The recent determination of the structure of eIF4E at atomic resolution has provided insight about how translation is initiated and regulated. Evidence suggests that eIF4F is also implicated in malignancy and apoptosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans.

            The nematode Caenorhabditis elegans is an important model for studying the genetics of ageing, with over 50 life-extension mutations known so far. However, little is known about the pathobiology of ageing in this species, limiting attempts to connect genotype with senescent phenotype. Using ultrastructural analysis and visualization of specific cell types with green fluorescent protein, we examined cell integrity in different tissues as the animal ages. We report remarkable preservation of the nervous system, even in advanced old age, in contrast to a gradual, progressive deterioration of muscle, resembling human sarcopenia. The age-1(hx546) mutation, which extends lifespan by 60-100%, delayed some, but not all, cellular biomarkers of ageing. Strikingly, we found strong evidence that stochastic as well as genetic factors are significant in C. elegans ageing, with extensive variability both among same-age animals and between cells of the same type within individuals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans.

              Many conditions that shift cells from states of nutrient utilization and growth to states of cell maintenance extend lifespan. We have carried out a systematic lifespan analysis of conditions that inhibit protein synthesis. We find that reducing the levels of ribosomal proteins, ribosomal-protein S6 kinase or translation-initiation factors increases the lifespan of Caenorhabditis elegans. These perturbations, as well as inhibition of the nutrient sensor target of rapamycin (TOR), which is known to increase lifespan, all increase thermal-stress resistance. Thus inhibiting translation may extend lifespan by shifting cells to physiological states that favor maintenance and repair. Interestingly, different types of translation inhibition lead to one of two mutually exclusive outputs, one that increases lifespan and stress resistance through the transcription factor DAF-16/FOXO, and one that increases lifespan and stress resistance independently of DAF-16. Our findings link TOR, but not sir-2.1, to the longevity response induced by dietary restriction (DR) in C. elegans, and they suggest that neither TOR inhibition nor DR extends lifespan simply by reducing protein synthesis.
                Bookmark

                Author and article information

                Journal
                Proc. Natl. Acad. Sci. U.S.A.
                Proceedings of the National Academy of Sciences of the United States of America
                1091-6490
                0027-8424
                Jan 20 2015
                : 112
                : 3
                Affiliations
                [1 ] Programs in Gene Function and Expression.
                [2 ] Programs in Gene Function and Expression, Bioinformatics and Integrative Biology, and Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605.
                [3 ] Programs in Gene Function and Expression, Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 heidi.tissenbaum@umassmed.edu.
                Article
                1412192112
                10.1073/pnas.1412192112
                25561524
                3c9e1e02-10aa-4183-af80-a765c99cad0f
                History

                functional capacity,gerospan,healthspan,healthy aging,lifespan

                Comments

                Comment on this article