269
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Phenotypic and functional features of human Th17 cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          T helper (Th) 17 cells represent a novel subset of CD4+ T cells that are protective against extracellular microbes, but are responsible for autoimmune disorders in mice. However, their properties in humans are only partially known. We demonstrate the presence of Th17 cells, some of which produce both interleukin (IL)-17 and interferon (IFN)-γ (Th17/Th1), in the gut of patients with Crohn's disease. Both Th17 and Th17/Th1 clones showed selective expression of IL-23R, CCR6, and the transcription factor RORγt, and they exhibited similar functional features, such as the ability to help B cells, low cytotoxicity, and poor susceptibility to regulation by autologous regulatory T cells. Interestingly, these subsets also expressed the Th1-transcription factor T-bet, and stimulation of these cells in the presence of IL-12 down-regulated the expression of RORγt and the production of IL-17, but induced IFN-γ. These effects were partially inhibited in presence of IL-23. Similar receptor expression and functional capabilities were observed in freshly derived IL-17–producing peripheral blood and tonsillar CD4+ T cells. The demonstration of selective markers for human Th17 cells may help us to understand their pathogenic role. Moreover, the identification of a subset of cells sharing features of both Th1 and Th17, which can arise from the modulation of Th17 cells by IL-12, may raise new issues concerning developmental and/or functional relationships between Th17 and Th1.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17.

          Interleukin 17 (IL-17) has been linked to autoimmune diseases, although its regulation and function have remained unclear. Here we have evaluated in vitro and in vivo the requirements for the differentiation of naive CD4 T cells into effector T helper cells that produce IL-17. This process required the costimulatory molecules CD28 and ICOS but was independent of the cytokines and transcription factors required for T helper type 1 or type 2 differentiation. Furthermore, both IL-4 and interferon-gamma negatively regulated T helper cell production of IL-17 in the effector phase. In vivo, antibody to IL-17 inhibited chemokine expression in the brain during experimental autoimmune encephalomyelitis, whereas overexpression of IL-17 in lung epithelium caused chemokine production and leukocyte infiltration. Thus, IL-17 expression characterizes a unique T helper lineage that regulates tissue inflammation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            IL-17 family cytokines and the expanding diversity of effector T cell lineages.

            Since its conception two decades ago, the Th1-Th2 paradigm has provided a framework for understanding T cell biology and the interplay of innate and adaptive immunity. Naive T cells differentiate into effector T cells with enhanced functional potential for orchestrating pathogen clearance largely under the guidance of cytokines produced by cells of the innate immune system that have been activated by recognition of those pathogens. This secondary education of post-thymic T cells provides a mechanism for appropriately matching adaptive immunity to frontline cues of the innate immune system. Owing in part to the rapid identification of novel cytokines of the IL-17 and IL-12 families using database searches, the factors that specify differentiation of a new effector T cell lineage-Th17-have now been identified, providing a new arm of adaptive immunity and presenting a unifying model that can explain many heretofore confusing aspects of immune regulation, immune pathogenesis, and host defense.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Requirement of Interleukin 17 Receptor Signaling for Lung Cxc Chemokine and Granulocyte Colony-Stimulating Factor Expression, Neutrophil Recruitment, and Host Defense

              Bacterial pneumonia is an increasing complication of HIV infection and inversely correlates with the CD4+ lymphocyte count. Interleukin (IL)-17 is a cytokine produced principally by CD4+ T cells, which induces granulopoiesis via granulocyte colony-stimulating factor (G-CSF) production and induces CXC chemokines. We hypothesized that IL-17 receptor (IL-17R) signaling is critical for G-CSF and CXC chemokine production and lung host defenses. To test this, we used a model of Klebsiella pneumoniae lung infection in mice genetically deficient in IL-17R or in mice overexpressing a soluble IL-17R. IL-17R–deficient mice were exquisitely sensitive to intranasal K. pneumoniae with 100% mortality after 48 h compared with only 40% mortality in controls. IL-17R knockout (KO) mice displayed a significant delay in neutrophil recruitment into the alveolar space, and had greater dissemination of K. pneumoniae compared with control mice. This defect was associated with a significant reduction in steady-state levels of G-CSF and macrophage inflammatory protein (MIP)-2 mRNA and protein in the lung in response to the K. pneumoniae challenge in IL-17R KO mice. Thus, IL-17R signaling is critical for optimal production of G-CSF and MIP-2 and local control of pulmonary K. pneumoniae infection. These data support impaired IL-17R signaling as a potential mechanism by which deficiency of CD4 lymphocytes predisposes to bacterial pneumonia.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                6 August 2007
                : 204
                : 8
                : 1849-1861
                Affiliations
                [1 ]Center for Research, Transfer and High Education on Chronic, Inflammatory, Degenerative and Neoplastic Disorders (DENOTHE) and [2 ]Department of Pathophysiology, University of Florence, Florence 50134, Italy
                Author notes

                CORRESPONDENCE Sergio Romagnani: s.romagnani@ 123456dmi.unifi.it

                Article
                20070663
                10.1084/jem.20070663
                2118657
                17635957
                3cb5860b-76a5-4fe5-82e8-f507095535f6
                Copyright © 2007, The Rockefeller University Press
                History
                : 2 April 2007
                : 20 June 2007
                Categories
                Articles
                Article

                Medicine
                Medicine

                Comments

                Comment on this article